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Organization

Tuesdays 9h45 - 13h (see agenda)

3 × 3h classes

Come see me today for the reading report

See course’s website
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Bibliography & relevant sources

General ML / Stats books

■ Kevin P. Murphy (2022). Probabilistic Machine Learning: An introduction. MIT Press

■ Trevor Hastie et al. (2001). The Elements of Statistical Learning. Springer Series in
Statistics. New York, NY, USA

■ Christopher M. Bishop (2007). Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer

Some relevant lecture/slides on the topic for a different point-of-view ("notations)

■ S. Robin lectures

■ Some lectures of this course on Graphical Models
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Introduction
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Types of statistical learning

Supervised

Data D = {(xi, yi)}ni=1 with yi an output (response) and xi some features (covariates).

The goal is to learn a good predictor f̂ such that yi ≈ f̂(xi) that generalizes well on new data.

Unsupervised (this course)

The data D = {xi}ni=1 The goal is to learn ”interesting” and hidden structure in the data to

■ partition the data, aka clustering

■ visualize/compress the data, aka dimension reduction

Generative models: posit a statistical model on the distribution of (Xi)

Many flavors in modern ML

semi-supervised, self-supervised, reinforcement learning, multi-task, etc.
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What this course is about...

Latent variables models for unsupervised learning

⇝ we will assume the generative process of X involves an unobserved (latent) variable Z
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What this course is about...

Latent variables models for unsupervised learning

⇝ we will assume the generative process of X involves an unobserved (latent) variable Z

Example: Dimension reduction

X in dimension p >> 1 and Z its low-dimensional representation

Source: https://aiml.com/what-is-dimensionality-reduction-2/

■ Principal Component Analysis (PCA)

■ Variational Auto-encoder (VAE)

■ (UMAP, t-SNE)
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Incomplete data models

Most often, the observations are involved in complicated (biological, ecological, physical)
processes, with many unobserved variables and complex dependency structure.

■ X observed random variables

■ Z unobserved (latent/hidden) variables

■ θ unknown parameters

An attempt at defining latent variables (creds. to S. Robin)

■ Frequentist setting:

latent variables = random but unobserved, parameters = fixed

■ Bayesian setting:

both latent variables and parameters = random

but

# latent variable ≃ # data, # parameters ≪ # data
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Different types of likelihoods
In this course, we place ourselves in the frequentist setting, using MLE inference. Although
Bayesian extension of the proposed models are common.

Complete data likelihood

Joint likelihood of the whole random process (X,Z) with given parameters θ.

pθ(X,Z) = pθ(X | Z)pθ(Z).

⇝ tractable in many models, but we do not observe Z !

Observed data likelihood

Marginal likelihood of the observed random variables X

pθ(X) =

∫
Z
pθ(X,z) dza

⇝ only involves the observed X, but not always tractable.

aWhen Z is discrete, replace
∫

by
∑
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Course outline

1 Clustering with mixture models

2 Inference in latent variable models: the EM algorithm

3 Probabilistic dimension reduction

4 Conclusion of the course
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Clustering with mixture models
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Motivation

Sometimes our data is organized in sub-population: groups of individuals we call clusters.

Example

In modern biology, discovering cell-types via their gene expression profile is an important task.

When the groups are unknown, we call the task of discovering them clustering1

1as opposed to classification in a supervised context
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Mathematical context

We search for an optimal partition of x = {x1, . . . , xn} into K groups.

Definition: partition

A partition C = {C1, . . . , CK} of {1, . . . , n} is a set of sets s.t.⋃
k

Ck = {1, . . . , n}, ∀k ̸= l, Ck ∩ Cl = ∅.

Alternative encoding of the partition

For each individual i = 1, . . . , n, we define its cluster membership zi ∈ {0, 1}K

k = 1, . . . ,K, zik =

{
1 if i belongs to cluster k,
0 otherwise

.

The set Z = {z1, . . . , zn} represents a partition of {1, . . . , n}. This particular encoding is
sometimes referred to as one-hot encoding.
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Clustering criteria

”Optimality” implies the definition of some criterion L ⇐⇒ assumptions on the nature of
clusters. Methods can be roughly split in two

Similarity-based methods

Design L via geometric notions of similarity between xi’s, favoring e.g.

■ elliptic clusters

■ convex clusters

■ connected clusters

Statistical methods
Consider the partition Z as a latent variable and posit a generative model pθ(X,Z)

⇝ Clustering becomes an inference problem of finding Ẑ.

There are connections between both !
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K-means
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The K-means problem

K-means seeks clusters well concentrated around their centroids µk := 1
|Ck|

∑
i∈Ck

xi by
minimizing

argmin
C

L(C,X) =

K∑
k=1

∑
i∈Ck

∥xi − µk∥22

 (K-means problem)

■ Good news: discrete problem ⇝ there exists an optimum C⋆.

■ Bad news: there are Kn possible partitions ⇝ enumeration is not an option.

In fact, K-means problem is a nonconvex NP-hard problem and one need to resort to fast
heuristics.
"With a slight abuse, we drop distinction between K-means problem and heuristics to solve it.
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The K-means algorithm (MacQueen 1967)

Draw centroids µ1, . . . , µK at random among the sample X and

1 Assign each point to its closest centroid (Voronöı cells)

Ck ←
{
i : ∥xi − µk∥22 = min

l
∥xi − µl∥22

}
2 recompute centroids as the barycenter of each center

µk :=
1

|Ck|
∑
i∈Ck

yi

3 Go to 1 until clusters (hence barycenters) are unchanged

Properties of the algorithm

K-means is a greedy algorithm which

■ monotonically decreases the criterion

■ converges in a finite number of iterations

■ will get stuck in local minima of L (non-convex)

⇝ In practice, we try several restarts with different random inits.
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Extensions

Kmeans++ initialization matter ! ⇝ stop drawing centroids at random

■ Choose µ1 uniformly among the sample

■ then sequentially do for each k = 2, . . . ,K

■ compute weight wi := minj<k ∥xi − µj∥22
■ Choose µk among the sample with proba ∝ wi

Optimality bounds can be obtained (Arthur et al. 2007)

Sparse K-means include variable selection, useful when xi in dimension d≫ n

Kernel K-means compute distance between ϕ(xi) with ϕ : X → H a feature map.
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Mixture models
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Probabilistic view on clustering

The partition is now seen as a set of discrete latent variables Z = {z1, . . . , zn}
Denote π = (π1, . . . , πK) the (unknown) cluster proportions, we have

pπ(zik = 1) = πk ⇐⇒ zi ∼M(1, π)

Mixture models

For all i = 1, . . . , n, mixture models suppose that (zi, xi) are drawn i.i.d. according to the
two-stage hierarchical model

1 Zi ∼MK(1, π)

2 Xi | {zik = 1} ∼ pγk

The model parameters are θ = {πk, γk}Kk=1 and pγ can be any parametric distribution overXi.

Clusters are sometimes called components

⇝ general and flexible framework, adapt to nature of the data (discrete, continuous,
mixed-type)via pγ
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Observed (marginal) likelihood

Properties: independence

In a mixture model, (Zi)i are i.i.d. and (Xi)i also are i.i.d.

Observed likelihood

pθ(X) =
∑

z1,...,zn

pθ(Z,X) =
∑

z1,...,zn

n∏
i=1

pθ(Xi | zi)pθ(zi),

=

n∏
i=1

∑
zi

pγ(Xi | zi)pθ(zi),

=

n∏
i=1

 K∑
k=1

πkpγk
(Xi)

 .

⇝ the marginal distribution of Xi is a convex combination (mixture) of the K base distribu-
tions (pγk

)k, with weights πk.
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Complete likelihood

Properties: conditional independence

In a mixture model, (Xi)i ⊥⊥| Z and (Zi)i ⊥⊥|X, but not identically distributed

Complete log-likelihood

log pθ(X,Z) = log pθ(Z) + log pθ(X | Z) =

n∑
i=1

log pπ(Zi) + log pγ(Xi | Zi),

=

K∑
k=1

n∑
i=1

Zik

[
log πk + log pγk

(Xi)
]
.

Posterior distribution of Z |X

For i = 1, . . . , n, Zi | Xi ∼MK(1, τi) with

τik := pθ(zik = 1 | Xi) ∝ πkpγk
(Xi)

Notice that τi also depends on the parameters θ.
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A note on identifiability

Definition: identifiability

A statistical model pθ is said to be identifiable iff the mapping θ 7→ pθ is injective.

Intuition: the labels of the clusters 1, . . . ,K should have no impact on the marginal likelihood

π1pγ1
(x) + π2pγ2

(x) = π2pγ2
(x) + π1pγ1

(x)

Label switching

Let σ be a permutation of J1,KK, then for a mixture model with parameters π, γ we have

p(X | π, γ) = p(X | σ(π), σ(γ))

Hence, there are K! equivalent formulations of a mixture model.

⇝ conceptually not a problem, it simply states that there are K! different encoding Z of a
given partition C = {C1, . . . , CK}.
⇝ can cause problems in Bayesian inference procedure since the posterior is highly multimodal.
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Gaussian Mixture Models (GMM)

Continuous data: x = {x1, . . . , xn} ⊂ Rd

Model: Mixture of Gaussians pγk
(x) = N (x | µk,Σk), with γk = (µk,Σk)

Multimodal marginal density around the (µk)k’s

µ1 µ2

x

p(
x|γ

) Type
Mixture
Cluster1
Cluster2

x1

x 2

0.1
0.2
0.3
0.4
0.5

level

Number of free parameters: K − 1 +Kd+K d(d+1)
2 = O(Kd2) to estimate
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Maximum-likelihood estimation

Non-convex MLE problem

argmax
πk,µk,Σk

n∑
i=1

log

 K∑
k=1

πk logN (xi | µk,Σk)

 .

■ Much more complex to maximize than in standard Gaussian models (K = 1)

■ No closed-form solution, gradients can be derived but

1 they are not cheap to compute at each iteration (although one could resort to stochastic
optimization to leverage this issue).

2 Requires re-projecting on the cone of p.d. matrices Σk ≻ 0.

By contrast, the complete log-likelihood is much simpler to handle

log pθ(x,Z) =

K∑
k=1

n∑
i=1

Zik

[
log πk + logN (xi | µk,Σk)

]
.

⇝ But we do not observe the Z !
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Maximum-likelihood estimation (cont’d)

A chicken-and-egg problem

1 If we knew Z we could maximize pθ(X,Z) ⇝ amount to compute MLE γ̂k in each
cluster. In the Gaussian case we’d have cluster’s empirical means and covariance

nk =
∑
i

zik, µ̂k =
∑
i

zikxi/nk, Σ̂k =
∑
i

zik
(xi − µ̂k)(xi − µ̂k)

⊤

nk

2 If we knew θ⋆, we could find the best estimate of Z via the posterior distribution

τik(θ) = pθ(zik = 1 | xi) =
πkN (xi | µk,Σk)∑
l πlN (xi | µl,Σl)

⇝ this suggest an iterative scheme between 1) & 2) to solve MLE.
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Inference in latent variable models: the
EM algorithm
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Some tools from information theory
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Jensen’s inequality

Quizz ! Which is larger: E[Z2] or E[Z]2 ?

Answer: E[Z2]− E[Z]2 = V(Z) ≥ 0

General result: Jensen’s inequality

Let Z be a random vector in Z ⊂ Rd and ϕ : Rd → R a convex function, then

EZ

[
ϕ(Z)

]
≥ ϕ

(
EZ [Z]

)
. (Jensen)

⇝ the inequality is reversed with ϕ concave (ϕ← −ϕ)

Proof :

■ ϕ convex =⇒ it is above its tangents, hence at any point z0 ∈ Rd, ∃a s.t.

∀z ∈ Rd, ϕ(z) ≥ ϕ(z0) + a(z − z0).

■ Take z0 = EZ [Z], since the above inequality is true for all z, it generalizes to EZ

EZ

[
ϕ(Z)

]
≥ z0 + a(EZ [Z]− z0)︸ ︷︷ ︸

=0

= z0 = ϕ
(
EZ [Z]

)
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Entropy of a discrete random variable

Definition: discrete entropy

For a discrete random variable Z with distribution q(Z = z) we define its entropy as

H(Z) = H(q) = −E
[
log q(Z)

]
= −

∑
z∈Z

q(z) log q(z)

with the convention that 0× log 0 = 0

Properties

■ H(q) ≥ 0

■ Continuous formulation: Let Z be a r.v. with distribution Q. If there exist a measure µ
such that dQ = q dµ then we can define

H(Q) = Hµ(q) = −
∫

log q(z)q(z) dµ(z)

Now depends on the base measure µ. Can be negative.
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Kullback-Leibler (KL) divergence
Definition: KL divergence (discrete case)

Let p and q be two distribution over discrete set Z, we define the KL-divergence as

KL(p ∥ q) := EZ∼p

[
log

p(Z)

q(Z)

]
=

∑
z∈Z

p(z) log
p(z)

q(z)

Properties

■ KL(p ∥ q) ≥ 0 with equality iff p = q (proof: Jensen on q
p (Z) with convex ϕ(x) = − log x)

■ Diverges if ∃z0 such that q(z0) = 0 when p(z0) ̸= 0

■ Not a distance (not symmetric)

■ Continuous formulation: For two distribution P and Q, if there exists a measure µ such
that dP = pdµ and dQ = q dµ, then

KL(P ∥ Q) =

∫
log

dP

dQ
dP =

∫
log

p(z)

q(z)
p(z) dµ(z).

⇝ invariant w.r.t. the choice of (p, q, µ) since the ratio dP/ dQ is invariant.
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The evidence lower bound (ELBO)
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Minorizer of the observed-likelihood

Evidence lower bound

Let q be a distribution over Z absolutely continuous with respect to pθ(X,Z). Then,

log pθ(X) ≥ L(q, θ) := Eq

[
log pθ(X,Z)

]
+H(q). (ELBO)

The quantity L is called the evidence lower-bound, moreover the gap is expressed as

log pθ(X)− L(q, θ) = KL(q ∥ pθ(· | X)).

Proof: log pθ(X) = log
∫
pθ(X, z) dz = logEq

[
pθ(X,Z)
q(Z)

]
Jensen

≥ Eq

[
log pθ(X,Z)

q(Z)

]
= L(q, θ)

Comments

■ The ELBO holds for any distribution q on Z

■ For a given θ, the gap is 0 iff
q(z) = pθ(z | X)
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Expectation-maximization (EM, Dempster et al. 1977)
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EM: a universal algorithm for latent variables

Intuition: chicken-and-egg
1 if we knew Z, we could easily work with f(θ) = log pθ(X,Z)
2 if we knew θ, the best representation of Z is via its posterior pθ(Z |X)

Expectation-Maximization algorithm

Starting from θ(0), iterate between

Expectation step

Use q(t+1)(Z) = pθ(t)(Z |X) to form the objective function

f(θ) = Q(θ, θ(t)) = EZ∼q(t+1)

[
log pθ(X,Z)

]
.

It involves (generalized) moments of Z under q(t+1).

Maximization step

Solve θ(t+1) ∈ argmaxθ Q(θ, θ(t))

In practice, EM stop after likelihood gaps fall below a given threshold ϵ

|L(q(t+1), θ(t))− L(q(t), θ(t−1))| = | log pθ(t)(X)− log pθ(t−1)(X)| < ϵ
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Rewriting EM: coordinate ascent on the ELBO

EM algorithm (equivalent formulation)

Starting from θ(0), iterate between

q(t+1) = argmax
q

L(q, θ(t)), (E-step)

θ(t+1) = argmax
θ

L(q(t+1), θ). (M-step)

■ E-step is equivalent to minq KL(q ∥ pθ(t+1)(· | X)) =⇒ q(t+1) = pθ(t+1)(· | X)

■ basis of inference in latent variable models, many extensions: see e.g. Peel et al. (2000)
for mixture models

35/60



Monotonic increase of the observed likelihood

Property of EM algorithm

The sequence of iterates {θ(t)}t returned by EM verifies

∀t ≥ 0, log pθ(t+1)(X) ≥ log pθ(t)(X)

Proof:

log pθ(t+1)(X) ≥︸︷︷︸
ELBO

L(q(t+1), θ(t+1)) ≥︸︷︷︸
M-step(t+1)

L(q(t+1), θ(t)) =︸︷︷︸
E-step(t)

log pθ(t)(X)

■ Guarantees EM converges with the likelihood gaps criterion

■ In general, only converges to local maxima of the likelihood

■ Does not guarantee convergence of the sequence of parameters {θ(t)}t itself.
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A graphical illustration of EM algorithm (cred: G. Obozinski)

Source: https://www.iro.umontreal.ca/~slacoste/teaching/MVA_GM/fall2015/cours_MVA_EM.pdf
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Illustration with Gaussian mixture

38/60



Expected complete log-likelihood

Denote τ
(t)
ik := pθ(t−1)(Zik = 1 | xi) =

Multinomial
Eq(t) [Zik], then

f(θ) =Eq(t)
[
log pθ(X,Z)

]
,

=Eq(t)

 n∑
i=1

log pθ(xi, Zi)

 ,

=Eq(t)

 K∑
k=1

n∑
i=1

Zik

[
log πk + logNq(xi | µk,Σk)

] ,

=

K∑
k=1

n∑
i=1

E
q
(t)
i

[Zik]
[
log πk + logNd(xi | µk,Σk)

]
,

=

K∑
k=1

n∑
i=1

τ
(t)
ik

[
log πk + logNd(xi | µk,Σk)

]
,

It involves τ
(t)
ik : (first) moments of Z under q(t).
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E-step for GMM

Compute the posterior given θ(t−1), q(t) = pθ(t−1)(Z |X)

As seen previously, the posterior for mixture model always writes

pθ(Z) =

n∏
i=1

MK(1, τi(θ)), with: τik(θ) ∝ πkpγk
(xi).

So that

τ
(t)
ik = τik(θ

(t−1)) =
πkNd(xi | µ(t−1)

k ,Σ
(t−1)
k )∑K

l=1 πlNd(xi | µ(t−1)
l ,Σ

(t−1)
l )

.

Careful with numerical underflow ⇝ better to work with in log-space with log τ .
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M-step for GMM

Solve
(π

(t)
k , µ

(t)
k ,Σ

(t)
k )Kk=1 ∈ argmax

θ

{
f(θ) = Eq(t) [log pθ(X,Z)]

}

For GMM, the updates are

ñ
(t)
k =

∑n
i=1 τ

(t)
ik ,

π
(t)
k =

ñ
(t)
k

n ,

µ
(t)
k = 1

ñ
(t)
k

∑n
i=1 τ

(t)
ik xi,

Σk = 1

ñ
(t)
k

∑n
i=1 τ

(t)
ik (xi − µ

(t)
k )(xi − µ

(t)
k )⊤

We recognize standard Gaussian MLE in each cluster, using soft probability memberships τ in
place of unknown Z.
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Link with K-means algorithm

The K-means algorithm can be interpreted as an EM algorithm for a constrained GMM with
equal proportions πk = 1/K, known isotropic covariance Σk = σ2 Idd. Dropping the known
quantities, the criterion is

argmin
µ1,...,µK ,Z

− log pµ(X,Z) = cte+
∑
k

∑
i∈Ck

∥xi − µk∥22.

Rewriting K-means (Classification-EM for GMM)

1 Hard E-step: set partition C(t+1) via MAP argmaxl τ
(t+1)
il = argminl ∥xi − µ

(t)
l ∥22

2 M-step: update the centroids µ
(t+1)
k ← (1/nk)

∑
i∈C

(t+1)
k

xi

Comments

■ highlight connections between similarity-based and probabilistic methods

■ unveil hypothesis behind K-means criterion: spherical, equal-volume and equal-size
clusters.
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Choosing the number of components K

Challenge: how to choose the number of clusters K ?

Intuition: the larger the likelihood, the better our model fits the data X

Caveat: complex models tend to provide larger likelihood, for example

■ mixture models with K − 1 components are nested in models with K components.

■ models with constraints (diagonal, spherical) are nested in unconstrained ones.

⇝ we need to account for ”model complexity”

Definition: dimension/size of a model

LetM = {pθ, θ ∈ ΘM}, we denote dM the number of free parameters in the model.
For unconstrained mixtures, it is dK = K − 1 +KdΓ, γk ∈ Γ.

Penalized likelihood criterion

For a mixture model with K components, denote θ̂K = argmaxθ∈ΘK
log pθ(X). A penalized

likelihood estimate of K is given by

K̂ = argmax
K

{
log pθ̂K − pen(K)

}
.
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Different penalties leads to different criterion

Definitions: AIC, BIC, ICL

For a modelM and observations X, we have several choice of penalize likelihood criteria

AIC(K) := log pθ̂K (X)− dK ,

BIC(K) := log pθ̂K (X)− dK
2

log(n),

ICL(K) := EZ∼pθ̂K
(·|X)

[
log pθ̂K (X,Z)

]
− dK

2
log(n)

Note: the ELBO property gives

ICL(K) = BIC(K)−H(pθ̂K (· |X)).

Hence, ICL is more focused on models with strongly separable clusters (peaked posterior =⇒
low entropy), while BIC is more focused on fitting the marginal density of X.

44/60



Focus on BIC: Bayesian information criterion

Put a prior p(K) on K, and the model: p(θ | K) and p(X | θ). Bayes rule suggests choosing

K̂ =argmax
K

{
p(K |X) ∝ p(K)p(X | θ)

}
,

=argmax
K

log p(K) + log p(X | K),

=argmax
K

log p(K) + log

∫
p(X | θ,K)p(θ | K) dθ.

Dropping the prior term log p(K) which is constant with n, we need to compute the integral in
the second term ⇝ difficult in general !

Under regularity assumptions (see Lebarbier et al. 2004, for details), we have

log p(X | K) = log pθ̂K (X)− dK
2

log(n) +OP (1).

This justifies the formula of BIC.
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Probabilistic dimension reduction
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Principal component analysis (PCA)
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Probabilistic PCA (pPCA)
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EM algorithm for pPCA
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Non-linear extension: variational auto-encoders (VAEs)
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Variational inference & illustration for the VAEs
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Untractable E-step

Until now we always managed to compute the necessary moments of the posterior for E-step,
i.e. to compute (given θ(t))

f(θ) = EZ∼p
θ(t)

(·|X)

[
log pθ(X,Z)

]
(1)

Reminders: computing Equation (1) involve

■ For mixtures: the marginal τ
(t+1)
ik = pθ(t)(zi = k |X) = pθ(t)(zi = k | xi) (posterior

independence).

■ For pPCA: Gaussian world, the conditional is also Gaussian

Problem: what if there’s no hope of reasonable computation time for Equation (1) ? Either
because

1 complicated posterior dependencies: z1, . . . ,zn |X (DAG moralization)

2 intractable normalization constant pθ(xi) =
∫
pθ(xi | Z) dZ
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Back to EM: coordinate-ascent on the ELBO

Recall the coordinate-ascent formulation from slide 35

q(t+1)= argmax
q

L(q, θ(t)), (E-step)

θ(t+1) = argmax
θ

L(q(t+1), θ), (M-step)

where L(q, θ) is the ELBO:

L(q, θ) := EZ∼q[log pθ(X,Z)] +H(q) (ELBO)

The E-step in an unconstrained problem over distribution q ∈ P(Z) (proba over
(z1, . . . , zn)). It can be rewritten as

q(t+1) = argmin
q∈P(Z)

KL(q(·) ∥ pθ(t)(· |X)), (E-step equivalent formulation)

which naturally leads to setting q(t+1) = pθ(t)(· |X)
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Variational inference: constraining the E-step

Since complex models have intractable posteriors, we need to constrain the distribution q to
belong in some prescribed family of probability distributions2 q ∈ Q ⊂ P(Z).

The variational, E-step becomes

q(t+1) = argmax
q∈Q

L(q, θ(t)). (VE-step)

Or, equivalently,
q(t+1) = argmin

q∈Q
KL(q(·) ∥ pθ(t)(· |X)).

Key idea: choose Q such that calculations in (VE-step) are tractable.

2The variational terminology stems from the fact that we are considering optimization problem over space of
functions (probability densities) which is called variational calculus.
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A common choice of variational family: mean-field approximation

Natural follow-up question: what choice for q ?

Mean-field family: ”forget” conditional dependencies of Z |X

q ∈ Q =

qτ : qτ (Z) =

n∏
i=1

qτi(zi), τi ∈ Ψ

 so that max
q∈Q
L(q) = max

τ∈Ψn
L(qτ ). (2)

Important remark: q is not a model of the observed data but rather the ELBO (and the KL
minimization) connects q to the data & the model (Blei et al. 2017)

Property

■ Entropy term: by independence H(q) =
∑n

i=1H(qi)
■ when zi is discrete (this course): we can enforce a parametric form qτi(zi) =MK(1; τi)

and Ψ = ∆K
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Variational-EM (VEM) algorithm

VEM algo: coordinate-ascent on the ELBO

Start from initial θ(0) and set a variational family Q

q(t+1) = argmax
q∈Q

L(q, θ(t)), (VE-step)

θ(t+1) = argmax
θ

L(q(t+1), θ), (M-step)

In general, maximization over τ = (τ1, . . . , τn) is done via a coordinate ascent / fixed-point
algorithm where we iteratively update qi keeping q−i fixed, iterating through i = 1, . . . , n:

q⋆i = argmax
qi

L(qi, q−i). (CAVI)

Pros & cons of VEM algorithm
■ Pros:

1 we choose Q such that everything is tractable
2 Approximation of intractable posterior via q(T ) in the sense of KL-divergence

■ Cons: only increase the ELBO, no guarantee to increase the likelihood anymore ! We get
an estimator

θ̂V ∈ argmax
θ

L(q(T ), θ)
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Conclusion of the course
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What we saw in this course

Three examples of general discrete latent variable models: GMM, pPCA, VAEs

■ incomplete data models: pθ(X) =
∑

Z pθ(X,Z)

■ the complete likelihood is easier to write than the marginal (but we do not observe Z)

■ Generalizes well to different type of data (discrete, continuous) via the choice of different
X | Z (i.e. pγ)

Inference procedures for latent variable model

■ EM algorithm

■ Main difficulties lies in E-step and links to the tractability of the posterior Z |X
■ tractable for mixture
■ tractable (forward-backward) for HMMs: clever use of the DAG
■ intractable for SBM

■ M-step is model dependent, i.e. depends on the choice of X | Z.

What we did not cover: ratical implementation and caveats
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