Elements of Bayesian statistics

nicolas.jouvin@inrae.fr

Reminder on some useful distributions

- The Dirichlet distribution is for discrete probability vector $\left(\theta_{1}, \ldots, \theta_{K}\right)$. It is a continuous distribution over the simplex $\mathcal{S}_{K}:=\left\{\theta \in \mathbb{R}^{K}: \theta_{k} \geq 0, \sum_{k} \theta_{k}=1\right\}$ with p.d.f.

$$
\operatorname{Dir}\left(\theta \mid \alpha_{1}, \ldots, \alpha_{K}\right)=\frac{1}{B(\alpha)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1}, \quad \text { with } B(\alpha):=\frac{\prod_{k} \Gamma\left(\alpha_{k}\right)}{\Gamma\left(\sum_{k} \alpha_{k}\right)} \text { the normalizing constant. }
$$

$\alpha=\left(\alpha_{1}, \ldots, \alpha_{K}\right)$ are hyper-parameters, more info on Wikipedia. When $K=2$, it is equivalent to the Beta distribution.

- The multinomial distribution over \mathbb{N}^{K} basically generalizes Binomial distribution when there are $K \geq 2$ possible outcomes. It can be thought of as the probability of counts for each side of a K-sided dice rolled L times. It a multivariate discrete probability distribution on $\mathcal{C}=\left\{\left(x_{1}, \ldots, x_{K}\right) \in \mathbb{N}^{L}: \sum_{k} x_{k}=L\right\}$ with mass function

$$
\mathcal{M}_{K}\left(x_{1}, \ldots, x_{K} \mid \theta, L\right)=\mathbb{P}\left(X=\left(x_{1}, \ldots, x_{K}\right) \mid \theta, L\right)=\mathbf{1}_{\left(x_{1}, \ldots, x_{K}\right) \in \mathcal{C}} \frac{L!}{\prod_{k=1}^{K} x_{k}!} \prod_{k=1}^{K} \theta_{k}^{x_{k}}
$$

Here, $\theta_{1}, \ldots, \theta_{K}$ are the probability for each side of the dice.
$N . B$. when $L=1$ (one draw), we call the multinomial a categorical distribution.

- The gamma distribution over \mathbb{R}_{+}is driven by two hyper-parameters $a, b>0$ called shape and rate. Its p.d.f. is written as

$$
\mathcal{G}(\theta \mid a, b)=\frac{b^{a}}{\Gamma(a)} \theta^{a-1} e^{-b \theta} \propto \theta^{a-1} e^{-b \theta}
$$

Special cases are the exponential $(a=2) \& \chi^{2}(k)(a=k / 2$ and $b=1 / 2)$ distributions.

- The Poisson distribution is a discrete probability measure over \mathbb{N} with intensity parameter $\theta>0$ and p.d.f.

$$
\forall x \in \mathbb{N}, \quad \mathbb{P}(X=x \mid \theta)=\mathcal{P}(x \mid \theta)=e^{-\theta} \frac{\theta^{x}}{x!}
$$

Exercise 1 (Conjugate posteriors). Derive the posterior distribution of $\theta \mid X=x$ for the following models

1. Dirichlet-Multinomial: $\theta \sim \operatorname{Dir}_{K}\left(\alpha_{1}, \ldots, \alpha_{K}\right)$ and $X_{1}, \ldots, X_{n} \mid \theta \stackrel{\text { i.i.d. }}{\sim} \mathcal{M}_{K}(1, \theta)$.
2. Gamma-Poisson: $\theta \sim \operatorname{Gamma}(a, b)$ and $X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} \mathcal{P}(\theta)$

Exercise 2 (Bayesian decision theory). Derive the form of the Bayes estimator

$$
\hat{\theta} \in \underset{\eta}{\operatorname{argmin}}\left\{\mathbb{E}_{\theta \sim \pi(\cdot \mid x)}[C(\eta, \theta)]=\int_{\Theta} C(\eta, \theta) \pi(\theta \mid x) \mathrm{d} \theta\right\}
$$

for the following cost functions

1. L^{2} loss: $C(\eta, \theta)=(\eta-\theta)^{2}, \Theta \subset \mathbb{R}^{d}$
2. L^{1} loss: $C(\eta, \theta)=|\eta-\theta|$ when $d=1$
3. $0-1$ loss: $C(\eta, \theta)=\mathbf{1}_{\eta \neq \theta}$, when Θ is finite.
4. Linear-Exponential loss: for $a>0, C(\eta, \theta)=e^{a(\eta-\theta)}-a(\eta-\theta)-1, \Theta \subset \mathbb{R}$

Exercise 3 (Beta-Binomial model). We recall the Beta-Binomial model (seen in the slides) $\theta \sim B e t a(a, b)$ and $X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} \operatorname{Ber}(\theta)$, with posterior $\theta \mid X \sim \operatorname{Beta}\left(a+\sum_{i} X_{i}, b+n-\sum_{i} X_{i}\right)$. Show that

1. the MLE is $\theta^{M L E}=\sum_{i} X_{i} / n$.
2. the posterior mean can be written as a convex combination of the MLE and the prior expectation

$$
\mathbb{E}[\theta \mid X]=\lambda_{n} \cdot \theta^{M L E}+\left(1-\lambda_{n}\right) \cdot \mathbb{E}_{\text {prior }}[\theta]
$$

3. What do you deduce of the prior's impact on the posterior mean as $n \rightarrow+\infty$?
