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Reminder on some useful distributions

• The Dirichlet distribution is for discrete probability vector (θ1, . . . ,θK ). It is a continuous distribution over

the simplex SK :=
{
θ ∈RK : θk ≥ 0,

∑
k θk = 1

}
with p.d.f.

Di r (θ |α1, . . . ,αK ) = 1

B(α)

K∏
k=1

θ
αk−1
k , with B(α) :=

∏
k Γ(αk )

Γ(
∑

k αk )
the normalizing constant.

α = (α1, . . . ,αK ) are hyper-parameters, more info on Wikipedia. When K = 2, it is equivalent to the Beta
distribution.

• The multinomial distribution over NK basically generalizes Binomial distribution when there are K ≥ 2
possible outcomes. It can be thought of as the probability of counts for each side of a K -sided dice rolled
L times. It a multivariate discrete probability distribution on C = {(x1, . . . , xK ) ∈ NL :

∑
k xk = L} with mass

function

MK (x1, . . . , xK | θ,L) =P(X = (x1, . . . , xK ) | θ,L) = 1(x1,...,xK )∈C
L!∏K

k=1 xk !

K∏
k=1

θ
xk
k

Here, θ1, . . . ,θK are the probability for each side of the dice.

N.B. when L = 1 (one draw), we call the multinomial a categorical distribution.

• The gamma distribution over R+ is driven by two hyper-parameters a,b > 0 called shape and rate. Its p.d.f.
is written as

G(θ | a,b) = ba

Γ(a)
θa−1e−bθ ∝ θa−1e−bθ.

Special cases are the exponential (a = 2) & χ2(k) (a = k/2 and b = 1/2) distributions.

• The Poisson distribution is a discrete probability measure over N with intensity parameter θ > 0 and p.d.f.

∀x ∈N, P(X = x | θ) =P (x | θ) = e−θ
θx

x!
.

Exercise 1 (Conjugate posteriors). Derive the posterior distribution of θ | X = x for the following models

1. Dirichlet-Multinomial: θ ∼ Di rK (α1, . . . ,αK ) and X1, . . . , Xn | θ i .i .d .∼ MK (1,θ).

2. Gamma-Poisson: θ ∼Gamma(a,b) and X1, . . . , Xn
i .i .d .∼ P (θ)

Exercise 2 (Bayesian decision theory). Derive the form of the Bayes estimator

θ̂ ∈ argmin
η

{
Eθ∼π(·|x)

[
C (η,θ)

]= ∫
Θ

C (η,θ)π(θ | x)dθ

}
,

for the following cost functions
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1. L2 loss: C (η,θ) = (η−θ)2,Θ⊂Rd

2. L1 loss: C (η,θ) = |η−θ| when d = 1

3. 0−1 loss: C (η,θ) = 1η ̸=θ, whenΘ is finite.

4. Linear-Exponential loss: for a > 0, C (η,θ) = ea(η−θ) −a(η−θ)−1,Θ⊂R

Exercise 3 (Beta-Binomial model). We recall the Beta-Binomial model (seen in the slides) θ ∼ Bet a(a,b) and

X1, . . . , Xn
i .i .d .∼ Ber (θ), with posterior θ | X ∼ Bet a(a +∑

i Xi ,b +n −∑
i Xi ).

Show that

1. the MLE is θMLE =∑
i Xi /n.

2. the posterior mean can be written as a convex combination of the MLE and the prior expectation

E[θ | X ] =λn ·θMLE + (1−λn) ·Epr i or [θ]

3. What do you deduce of the prior’s impact on the posterior mean as n →+∞ ?
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