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Organization

Thursdays 8h30 - 11h45, this room.

6 × 3h classes

1h30 class + 1h30 practical session (except today)

Important: you need one computer/person for practical sessions
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Evaluation

1 CC: assiduity, practical session

2 Final exam on Friday 12th January, 2024

3 max(Exam,mean(Exam,CC))
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Bibliography & relevant sources

■ Kevin P. Murphy (2022). Probabilistic Machine Learning: An introduction. MIT Press

■ Trevor Hastie et al. (2001). The Elements of Statistical Learning. Springer Series in
Statistics. New York, NY, USA

■ Christopher M. Bishop (2007). Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer

Some relevant lecture/slides on the topic for a different point-of-view ("notations)

■ S. Robin lectures

■
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Introduction
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Types of statistical learning

Supervised

Data D = {(xi, yi)}ni=1 with yi an output (response) and xi some features (covariates).

The goal is to learn a good predictor f̂ such that yi ≈ f̂(xi) that generalizes well on new data.

Unsupervised (this course)

The data D = {xi}ni=1 The goal is to learn ”interesting” and hidden structure in the data to

■ partition the data, aka clustering

■ visualize/compress the data, aka dimension reduction

Generative models: posit a statistical model on the distribution of (Xi)

Many flavors in modern ML

semi-supervised, self-supervised, reinforcement learning, multi-task, etc.
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What this course is about...

(Discrete) latent variables models for unsupervised learning

⇝ we will assume the generative process of X involves an unobserved (latent) variable Z

Clustering
X is an unlabeled observation and Z its group membership
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What this course is about...

(Discrete) latent variables models for unsupervised learning

⇝ we will assume the generative process of X involves an unobserved (latent) variable Z

Time series segmentation
X is the temporal signal and Z the cardiac phase

Example of ECG annotation, source: https://medium.com/data-analysis-center/56f8b9abd83a

7/134

https://medium.com/data-analysis-center/56f8b9abd83a


What this course is about...

(Discrete) latent variables models for unsupervised learning

⇝ we will assume the generative process of X involves an unobserved (latent) variable Z

Node clustering in a network

X is the graph (connection between node) and Z the group of the node (community)
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Course outline

1 Fundamentals of Bayesian statistics

2 Clustering with mixture models

3 Inference in latent variable models: the EM algorithm

4 Hidden Markov Models (HMMs)

5 Stochastic Block Model: an introduction to variational inference

6 Conclusion of the course
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Fundamentals of Bayesian statistics
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Bayes formula
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Frequentist inference

Assumption: the observation x = (x1, . . . , xn) ∈ Xn is a realization of a random vector
X = {X1, . . . , Xn} with distribution pθ⋆ .

Posit: a statistical model {pθ, θ ∈ Θ}, i.e. a family of parametric distribution on Xn

Goal: Provide an estimate θ̂ of θ⋆. 1

Maximum-likelihood estimation

Find the model, hence θ, that maximizes the probability of having seen the data

θ̂n ∈ argmax
θ∈Θ

log pθ(x1, . . . , xn) (MLE)

1and eventually derive theoretical guarantees such as convergence and confidence intervals on
θ̂n(X1, . . . , Xn) (e.g. via central limit theorem)
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The Bayesian paradigm

Maximum-likelihood and frequentist statistics produces point estimates

Paradigm shift: random parameters

Parameters θ are no longer treated as deterministic but as random quantities. The prior
distribution, denoted as π(θ), encodes knowledge & uncertainty we have on the parameters
before seeing new data.
⇝ the goal is to update this a priori knowledge when new data comes: this is the essence of
Bayes formula.

A bit of history...

The terminology Bayesian has been coined that way thanks to the work of Reverend Thomas
Bayes (1701-1761) and his posthumous essay in view of solving the doctrine of chance. Pierre-
Simon Laplace independently proposed a version in 1774.
N.B. : this course will not settle the somewhat sterile debate ”Bayesian VS Frequentist”.
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Bayes formula

Equipped with a prior π(θ), we posit an observational model on X | θ ⇐⇒ the likelihood.
Bayesian modelization essentially adds one layer to frequentist models : the prior.

1. θ ∼ π, (prior)

2. X | θ ∼ p(· | θ) = pθ (likelihood).

The posterior

Given a realization x, we update our prior via a new distribution called the posterior :

π(θ | x) = p(x | θ)π(θ)
Z

, (Bayes formula)

Here, Z =
∫
Θ
p(x | θ)π(θ) dθ is a normalization constant, independent of θ. Thus, it is

common to writea

π(θ | x) ∝ p(x | θ)π(θ)
aAlthough computing this normalization constant is generally a challenging task in Bayesian statistics.
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Choosing a prior

Expert knowledge

The prior π may be used to represent any available expert knowledge on θ.

Conjugate priors

When the prior π and the posterior π(· | x) belong to the same family of distributions (e.g.
Gaussian, Beta, etc.), then we say that the prior is conjugate to the observational model
p(x | θ). Skip to an example

Conjugate priors are widely used as they greatly simplify computations.

Uninformative prior

When the prior equally charges Θ we say that the prior is uninformative, noted π(θ) ∝ 1.
Obviously, π ∝ 1 does not always define a proper p.d.f. (consider Θ = R). Still, as long as
the posterior is well defined (i.e. the normalization constant Z exists and is finite) then we
can still use the posterior π(θ | x) and the prior is improper.
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Example of conjugacy: the Beta-Binomial model (1)

Experiment & question Given a sequence of independent coin flips x = {x1, . . . , xn},
determine the probability of getting tail.

Observational model: the likelihood
Given a probability of tail θ, we model the random vector X = (X1, . . . , Xn) as i.i.d. Bernoulli
Xi ∼ Ber(θ) so that

p(X | θ) =
n∏

i=1

Ber(xi | θ) = θ
∑

i xi(1− θ)
∑

i 1−xi .

Choice of a prior

We use Beta distribution with support Θ = [0, 1]

π(θ) = Beta(a, b) ∝ 1[0,1](θ)θ
a−1(1− θ)b−1.

a and b are called hyper-parameters and they control our level of a priori

■ a = b = 1 : uniform on [0, 1] (uninformative)

■ a = b > 1 : in favor of a balanced coin, the greater a, the stronger the prior

■ a > b (resp. a < b): in favor of tail (resp. head).
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Example of conjugacy: the Beta-Binomial model (2)
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Figure: Graph of the p.d.f. Beta(· | a, b) for different values of a and b.
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Example of conjugacy: the Beta-Binomial model (3)

We seek to derive the posterior, and we directly have

π(θ |X) ∝ p(X | θ)π(θ),
∝ θ

∑
i xi(1− θ)

∑
i 1−xiθa−1(1− θ)b−11[0,1](θ),

∝ θa+
∑

i xi−1(1− θ)b+n−
∑

i xi−11[0,1](θ).

We recognize the p.d.f of a Beta distribution

θ |X ∼ Beta

a+
∑
i

Xi, b+ n−
∑
i

Xi


Remarks :

1 a and b act as pseudo-counts for head and tails, smoothing the estimates when n is small.

2 This conjugacy between the Beta prior and the binomial model always hold : property of
the model (prior + likelihood) and not our specific experiment.
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Bayesian decision theory
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Bayesian point estimates

Having derived the posterior: how do we provide point estimates θ̂ ?

Cost function
A cost function is a function C : Θ×Θ ∈ R+ where C(η, θ) is the ”cost of predicting η for a
parameter θ. Some examples

■ C(η, θ) = (η − θ)p (Lp-loss)

■ C(η, θ) = 1η ̸=θ (0-1 loss)

Bayesian estimator

Remember that θ is random. For a given model and observation x, the Bayesian estimator
is the one that minimizes the average cost under the posterior distribution:

θ̂ ∈ argmin
η

{
Eθ∼π(·|x)

[
C(η, θ)

]
=

∫
Θ

C(η, θ)π(θ | x) dθ
}
. (Bayes estimator)
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Posterior Mean, Median & Mode

Different cost functions leads to different Bayes estimator among which

1 posterior mean θ̂ = E[θ | x] corresponds to the L2-loss

2 posterior median θ̂ such that π(θ ≥ θ̂ | x) = π(θ ≤ θ̂ | x) = 0.5 (L1-loss)

3 posterior mode (aka MAP): θ̂ ∈ argmaxθ π(θ | x) (0-1 loss)

Maximum a posteriori is one of the most popular

■ reduces to an optimization problem

■ log-prior can be interpreted in a frequentist setting as a regularizer for MLE

log π(θ | x) = cte+ log pθ(x)︸ ︷︷ ︸
likelihood

+ log π(θ)︸ ︷︷ ︸
regularizer

Credibility regions

The posterior may also be used for uncertainty quantification by computing regions R ⊂ Θ s.t.
π(θ ∈ R | x) =

∫
R π(θ | x) dθ = 1− α
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Latent variable models
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Incomplete data models

Most often, the observations are involved in complicated (biological, ecological, physical)
processes, with many unobserved variables and complex dependency structure.

■ X observed random variables

■ Z unobserved (latent/hidden) variables

■ θ unknown parameters

An attempt at defining latent variables (creds. to S. Robin)

■ Frequentist setting:

latent variables = random but unobserved, parameters = fixed

■ Bayesian setting:

both latent variables and parameters = random

but

# latent variable ≃ # data, # parameters ≪ # data
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Different types of likelihoods
In this course, we place ourselves in the frequentist setting, using MLE inference. Although
Bayesian extension of the proposed models are common.

Complete data likelihood

Joint likelihood of the whole random process (X,Z) with given parameters θ.

pθ(X,Z) = pθ(X | Z)pθ(Z).

⇝ tractable in many models, but we do not observe Z !

Observed data likelihood

Marginal likelihood of the observed random variables X

pθ(X) =

∫
Z
pθ(X, z) dza

⇝ only involves the observed X, but not always tractable.

aWhen Z is discrete, replace
∫

by
∑
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Clustering with mixture models
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Motivation

Sometimes our data is organized in sub-population: groups of individuals we call clusters.

Example

In modern biology, discovering cell-types via their gene expression profile is an important task.

When the groups are unknown, we call the task of discovering them clustering2

2as opposed to classification in a supervised context
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Mathematical context

We search for an optimal partition of x = {x1, . . . , xn} into K groups.

Definition: partition

A partition C = {C1, . . . , CK} of {1, . . . , n} is a set of sets s.t.⋃
k

Ck = {1, . . . , n}, ∀k ̸= l, Ck ∩ Cl = ∅.

Alternative encoding of the partition

For each individual i = 1, . . . , n, we define its cluster membership zi ∈ {0, 1}K

k = 1, . . . ,K, zik =

{
1 if i belongs to cluster k,
0 otherwise

.

The set Z = {z1, . . . , zn} represents a partition of {1, . . . , n}. This particular encoding is
sometimes referred to as one-hot encoding.
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Clustering criteria

”Optimality” implies the definition of some criterion L ⇐⇒ assumptions on the nature of
clusters. Methods can be roughly split in two

Similarity-based methods

Design L via geometric notions of similarity between xi’s, favoring e.g.

■ elliptic clusters

■ convex clusters

■ connected clusters

Statistical methods
Consider the partition Z as a latent variable and posit a generative model pθ(X,Z)

⇝ Clustering becomes an inference problem of finding Ẑ.

There are connections between both !
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K-means
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The K-means problem

K-means seeks clusters well concentrated around their centroids µk := 1
|Ck|

∑
i∈Ck

xi by
minimizing

argmin
C

L(C,X) =

K∑
k=1

∑
i∈Ck

∥xi − µk∥22

 (K-means problem)

■ Good news: discrete problem ⇝ there exists an optimum C⋆.

■ Bad news: there are Kn possible partitions ⇝ enumeration is not an option.

In fact, K-means problem is a nonconvex NP-hard problem and one need to resort to fast
heuristics.
"With a slight abuse, we drop distinction between K-means problem and heuristics to solve it.
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The K-means algorithm (MacQueen 1967)

Draw centroids µ1, . . . , µK at random among the sample X and

1 Assign each point to its closest centroid

Ck ←
{
i : ∥xi − µk∥22 = min

j
∥xj − µk∥22

}
2 recompute centroids as the barycenter of each center

µk :=
1

|Ck|
∑
i∈Ck

yi

3 Go to 1 until clusters (hence barycenters) are unchanged

Properties of the algorithm

K-means is a greedy algorithm which

■ monotonically decreases the criterion

■ converges in a finite number of iterations

■ will get stuck in local minima of L (non-convex)

⇝ In practice, we try several restarts with different random inits.
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Extensions

Kmeans++ initialization matter ! ⇝ stop drawing centroids at random

■ Choose µ1 uniformly among the sample

■ then sequentially do for each k = 2, . . . ,K

■ compute weight wi := minj<k ∥xi − µj∥22
■ Choose µk among the sample with proba ∝ wi

Optimality bounds can be obtained (Arthur et al. 2007)

Sparse K-means include variable selection, useful when xi in dimension d≫ n

Kernel K-means compute distance between ϕ(xi) with ϕ : X → H a feature map.
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Mixture models
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Probabilistic view on clustering

The partition is now seen as a set of discrete latent variables Z = {z1, . . . , zn}
Denote π = (π1, . . . , πK) the (unknown) cluster proportions, we have

pπ(zik = 1) = πk ⇐⇒ zi ∼M(1, π)

Mixture models

For all i = 1, . . . , n, mixture models suppose that (zi, xi) are drawn i.i.d. according to the
two-stage hierarchical model

1 Zi ∼MK(1, π)

2 Xi | {zik = 1} ∼ pγk

The model parameters are θ = {πk, γk}Kk=1 and pγ can be any parametric distribution overXi.

Clusters are sometimes called components

⇝ general and flexible framework, adapt to nature of the data (discrete, continuous,
mixed-type)via pγ
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Observed (marginal) likelihood

Properties: independence

In a mixture model, (Zi)i are i.i.d. and (Xi)i also are i.i.d.

Observed likelihood

pθ(X) =
∑

z1,...,zn

pθ(Z,X) =
∑

z1,...,zn

n∏
i=1

pθ(Xi | zi)pθ(zi),

=

n∏
i=1

∑
zi

pγ(Xi | zi)pθ(zi),

=

n∏
i=1

 K∑
k=1

πkpγk
(Xi)

 .

⇝ the marginal distribution of Xi is a convex combination (mixture) of the K base distribu-
tions (pγk

)k, with weights πk.
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Complete likelihood

Properties: conditional independence

In a mixture model, (Xi)i ⊥⊥| Z and (Zi)i ⊥⊥|X, but not identically distributed

Complete log-likelihood

log pθ(X,Z) = log pθ(Z) + log pθ(X | Z) =

n∑
i=1

log pπ(Zi) + log pγ(Xi | Zi),

=

K∑
k=1

n∑
i=1

Zik

[
log πk + log pγk

(Xi)
]
.

Posterior distribution of Z |X

For i = 1, . . . , n, Zi | Xi ∼MK(1, τi) with

τik := pθ(zik = 1 | Xi) ∝ πkpγk
(Xi)

Notice that τi also depends on the parameters θ.
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A note on identifiability

Definition: identifiability

A statistical model pθ is said to be identifiable iff the mapping θ 7→ pθ is injective.

Intuition: the labels of the clusters 1, . . . ,K should have no impact on the marginal likelihood

π1pγ1
(x) + π2pγ2

(x) = π2pγ2
(x) + π1pγ1

(x)

Label switching

Let σ be a permutation of J1,KK, then for a mixture model with parameters π, γ we have

p(X | π, γ) = p(X | σ(π), σ(γ))

Hence, there are K! equivalent formulations of a mixture model.

⇝ conceptually not a problem, it simply states that there are K! different encoding Z of a
given partition C = {C1, . . . , CK}.
⇝ can cause problems in Bayesian inference procedure since the posterior is highly multimodal.
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Gaussian Mixture Models (GMM)

Continuous data: x = {x1, . . . , xn} ⊂ Rd

Model: Mixture of Gaussians pγk
(x) = N (x | µk,Σk), with γk = (µk,Σk)

Multimodal marginal density around the (µk)k’s

µ1 µ2

x

p(
x|γ

) Type
Mixture
Cluster1
Cluster2

x1

x 2

0.1
0.2
0.3
0.4
0.5

level

Number of free parameters: K − 1 +Kd+K d(d+1)
2 = O(Kd2) to estimate

37/134



Maximum-likelihood estimation

Non-convex MLE problem

argmax
πk,µk,Σk

n∑
i=1

log

 K∑
k=1

πk logN (xi | µk,Σk)

 .

■ Much more complex to maximize than in standard Gaussian models (K = 1)

■ No closed-form solution, gradients can be derived but

1 they are not cheap to compute at each iteration (although one could resort to stochastic
optimization to leverage this issue).

2 Requires re-projecting on the cone of p.d. matrices Σk ≻ 0.

By contrast, the complete log-likelihood is much simpler to handle

log pθ(x,Z) =

K∑
k=1

n∑
i=1

Zik

[
log πk + logN (xi | µk,Σk)

]
.

⇝ But we do not observe the Z !
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Maximum-likelihood estimation (cont’d)

A chicken-and-egg problem

1 If we knew Z we could maximize pθ(X,Z) ⇝ amount to compute MLE γ̂k in each
cluster. In the Gaussian case we’d have cluster’s empirical means and covariance

nk =
∑
i

zik, µ̂k =
∑
i

zikxi/nk, Σ̂k =
∑
i

zik
(xi − µ̂k)(xi − µ̂k)

⊤

nk

2 If we knew θ⋆, we could find the best estimate of Z via the posterior distribution

τik(θ) = pθ(zik = 1 | xi) =
πkN (xi | µk,Σk)∑
l πlN (xi | µl,Σl)

⇝ this suggest an iterative scheme between 1) & 2) to solve MLE.
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Inference in latent variable models: the
EM algorithm
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Some tools from information theory
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Jensen’s inequality

Quizz ! Which is larger: E[Z2] or E[Z]2 ?

⇝ E[Z2]− E[Z]2 = V(Z) ≥ 0

General result: Jensen’s inequality

Let Z be a random vector in Z ⊂ Rd and ϕ : Rd → R a convex function, then

EZ

[
ϕ(Z)

]
≥ ϕ

(
EZ [Z]

)
. (Jensen)

⇝ the inequality is reversed with ϕ concave (ϕ← −ϕ)

Proof :

■ ϕ convex =⇒ it is above its tangents, hence at any point z0 ∈ Rd,∃a s.t.

∀z ∈ Rd, ϕ(z) ≥ ϕ(z0) + a(z − z0).

■ Take z0 = EZ [Z], since the above inequality is true for all z, it generalizes to EZ

EZ

[
ϕ(Z)

]
≥ z0 + a(EZ [Z]− z0)︸ ︷︷ ︸

=0

= z0 = ϕ
(
EZ [Z]

)
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Entropy of a random variable

Definition: entropy

For a discrete random variable Z with distribution q(Z = z) we define its entropy as

H(Z) = H(q) = −E
[
log q(Z)

]
= −

∑
z∈Z

q(z) log q(z)

with the convention that 0× log 0 = 0

Properties

■ H(q) ≥ 0

■ Continuous formulation: Let Z be a r.v. with distribution Q. If there exist a measure µ
such that dQ = q dµ then we can define

H(Q) = Hµ(q) = −
∫

log q(z)q(z) dµ(z)

Now depends on the base measure µ.
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Kullback-Leibler (KL) divergence
Definition: KL divergence (discrete case)

Let p and q be two distribution over discrete set Z, we define the KL-divergence as

KL(p ∥ q) := EZ∼p

[
log

p(Z)

q(Z)

]
=

∑
z∈Z

p(z) log
p(z)

q(z)

Properties

■ KL(p ∥ q) ≥ 0 with equality iff p = q (proof: Jensen on q
p (Z) with convex ϕ(x) = − log x)

■ Diverges if ∃z0 such that q(z0) = 0 when p(z0) = 0

■ Not a distance (not symmetric)

■ Continuous formulation: For two distribution P and Q, if there exists a measure µ such
that dP = p dµ and dQ = q dµ, then

KL(P ∥ Q) =

∫
log

dP

dQ
dP =

∫
log

p(z)

q(z)
p(z) dµ(z).

⇝ invariant w.r.t. the choice of (p, q, µ) since the ratio dP/ dQ is invariant.
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The evidence lower bound (ELBO)
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Minorizer of the observed-likelihood

Evidence lower bound

Let q be a distribution over Z absolutely continuous with respect to pθ(X,Z). Then,

log pθ(X) ≥ L(q, θ) := Eq

[
log pθ(X,Z)

]
+H(q). (ELBO)

The quantity L is called the evidence lower-bound, moreover the gap is expressed as

log pθ(X)− L(q, θ) = KL(q ∥ pθ(· | X)).

Proof: log pθ(X) = log
∫
pθ(X, z) dz = logEq

[
pθ(X,Z)
q(Z)

]
Jensen

≥ Eq

[
log pθ(X,Z)

q(Z)

]
= L(q, θ)

Comments

■ The ELBO holds for any distribution q on Z

■ For a given θ, the gap is 0 iff
q(z) = pθ(z | X)
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Expectation-maximization (EM, Dempster et al. 1977)
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EM: a universal algorithm for latent variables

Intuition: chicken-and-egg
1 if we knew Z, we could easily work with f(θ) = log pθ(X,Z)
2 if we knew θ, the best representation of Z is via its posterior pθ(Z |X)

Expectation-Maximization algorithm

Starting from θ(0), iterate between

Expectation step

Use q(t+1)(Z) = pθ(t)(Z |X) to form the objective function

f(θ) = Q(θ, θ(t)) = EZ∼q(t+1)

[
log pθ(X,Z)

]
.

It involves (generalized) moments of Z under q(t+1).

Maximization step

Solve θ(t+1) ∈ argmaxθ Q(θ, θ(t))

In practice, EM stop after likelihood gaps fall below a given threshold ϵ

|L(q(t+1), θ(t))− L(q(t), θ(t−1))| = | log pθ(t)(X)− log pθ(t−1)(X)| < ϵ
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Rewriting EM: coordinate ascent on the ELBO

EM algorithm (equivalent formulation)

Starting from θ(0), iterate between

q(t+1) = argmax
q

L(q, θ(t)), (E-step)

θ(t+1) = argmax
θ

L(q(t+1), θ). (M-step)

■ E-step is equivalent to minq KL(q ∥ pθ(t+1)(· | X)) =⇒ q(t+1) = pθ(t+1)(· | X)

■ basis of inference in latent variable models, many extensions: see e.g. Peel et al. (2000)
for mixture models
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Monotonic increase of the observed likelihood

Property of EM algorithm

The sequence of iterates {θ(t)}t returned by EM verifies

∀t ≥ 0, log pθ(t+1)(X) ≥ log pθ(t)(X)

Proof:

log pθ(t+1)(X) ≥︸︷︷︸
ELBO

L(q(t+1), θ(t+1)) ≥︸︷︷︸
M-step(t+1)

L(q(t+1), θ(t)) =︸︷︷︸
E-step(t)

log pθ(t)(X)

■ Guarantees EM converges with the likelihood gaps criterion

■ In general, only converges to local maxima of the likelihood

■ Does not guarantee convergence of the sequence of parameters {θ(t)}t itself.
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A graphical illustration of EM algorithm (cred: G. Obozinski)
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Illustration with Gaussian mixture
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Expected complete log-likelihood

Denote τ
(t)
ik := pθ(t−1)(Zik = 1 | xi) =

Multinomial
Eq(t) [Zik], then

f(θ) =Eq(t)
[
log pθ(X,Z)

]
,

=Eq(t)

 n∑
i=1

log pθ(xi, Zi)

 ,

=Eq(t)

 K∑
k=1

n∑
i=1

Zik

[
log πk + logNq(xi | µk,Σk)

] ,

=

K∑
k=1

n∑
i=1

E
q
(t)
i

[Zik]
[
log πk + logNd(xi | µk,Σk)

]
,

=

K∑
k=1

n∑
i=1

τ
(t)
ik

[
log πk + logNd(xi | µk,Σk)

]
,

It involves τ
(t)
ik : (first) moments of Z under q(t).
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E-step for GMM

Compute the posterior given θ(t−1), q(t) = pθ(t−1)(Z |X)

As seen previously, the posterior for mixture model always writes

pθ(Z) =

n∏
i=1

MK(1, τi(θ)), with: τik(θ) ∝ πkpγk
(xi).

So that

τ
(t)
ik = τik(θ

(t−1)) =
πkNd(xi | µ(t−1)

k ,Σ
(t−1)
k )∑K

l=1 πlNd(xi | µ(t−1)
l ,Σ

(t−1)
l )

.

Careful with numerical underflow ⇝ better to work with in log-space with log τ .
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M-step for GMM

Solve
(π

(t)
k , µ

(t)
k ,Σ

(t)
k )Kk=1 ∈ argmax

θ

{
f(θ) = Eq(t) [log pθ(X,Z)]

}

For GMM, the updates are

ñ
(t)
k =

∑n
i=1 τ

(t)
ik ,

π
(t)
k =

ñ
(t)
k

n ,

µ
(t)
k = 1

ñ
(t)
k

∑n
i=1 τ

(t)
ik xi,

Σk = 1

ñ
(t)
k

∑n
i=1 τ

(t)
ik (xi − µ

(t)
k )(xi − µ

(t)
k )⊤

We recognize standard Gaussian MLE in each cluster, using soft probability memberships τ in
place of unknown Z.
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Link with K-means algorithm

The K-means algorithm can be interpreted as an EM algorithm for a constrained GMM with
equal proportions πk = 1/K, known isotropic covariance Σk = σ2 Idd. Dropping the known
quantities, the criterion is

argmin
µ1,...,µK ,Z

− log pµ(X,Z) = cte+
∑
k

∑
i∈Ck

∥xi − µk∥22.

Rewriting K-means (Classification-EM for GMM)

1 Hard E-step: set partition C(t+1) via MAP argmaxl τ
(t+1)
il = argminl ∥xi − µ

(t)
l ∥22

2 M-step: update the centroids µ
(t+1)
k ← (1/nk)

∑
i∈C

(t+1)
k

xi

Comments

■ highlight connections between similarity-based and probabilistic methods

■ unveil hypothesis behind K-means criterion: spherical, equal-volume and equal-size
clusters.
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Choosing the number of components K

Challenge: how to choose the number of clusters K ?

Intuition: the larger the likelihood, the better our model fits the data X

Caveat: complex models tend to provide larger likelihood, for example

■ mixture models with K − 1 components are nested in models with K components.

■ models with constraints (diagonal, spherical) are nested in unconstrained ones.

⇝ we need to account for ”model complexity”

Definition: dimension/size of a model

LetM = {pθ, θ ∈ ΘM}, we denote dM the number of free parameters in the model.
For unconstrained mixtures, it is dK = K − 1 +KdΓ, γk ∈ Γ.

Penalized likelihood criterion

For a mixture model with K components, denote θ̂K = argmaxθ∈ΘK
log pθ(X). A penalized

likelihood estimate of K is given by

K̂ = argmax
K

{
log pθ̂K − pen(K)

}
.
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Different penalties leads to different criterion

Definitions: AIC, BIC, ICL

For a modelM and observations X, we have several choice of penalize likelihood criteria

AIC(K) := log pθ̂K (X)− dK ,

BIC(K) := log pθ̂K (X)− dK
2

log(n),

ICL(K) := EZ∼pθ̂K
(·|X)

[
log pθ̂K (X,Z)

]
− dK

2
log(n)

Note: the ELBO property gives

ICL(K) = BIC(K)−H(pθ̂K (· |X)).

Hence, ICL is more focused on models with strongly separable clusters (peaked posterior =⇒
low entropy), while BIC is more focused on fitting the marginal density of X.
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Focus on BIC: Bayesian information criterion

Put a prior p(K) on K, and the model: p(θ | K) and p(X | θ). Bayes rule suggests choosing

K̂ =argmax
K

{
p(K |X) ∝ p(K)p(X | θ)

}
,

=argmax
K

log p(K) + log p(X | K),

=argmax
K

log p(K) + log

∫
p(X | θ,K)p(θ | K) dθ.

Dropping the prior term log p(K) which is constant with n, we need to compute the integral in
the second term ⇝ difficult in general !

Under regularity assumptions (see Lebarbier et al. 2004, for details), we have

log p(X | K) = log pθ̂K (X)− dK
2

log(n) +OP (1).

This justifies the formula of BIC.
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Hidden Markov Models (HMMs)
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Motivations

What if observations X = {xi}i are ordered ? e.g.

■ time series

■ genomic data: observations collected at precise locations in the genome

■ etc.

⇝ it is likely that ”past” influences the ”future”.

Need to introduce dependence between observations/latent variables in the model
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Motivations

What if observations X = {xi}i are ordered ? e.g.
■ time series
■ genomic data: observations collected at precise locations in the genome
■ etc.
⇝ it is likely that ”past” influences the ”future”.

Need to introduce dependence between observations/latent variables in the model

Example 1: time series segmentation

Source: https://medium.com/data-analysis-center/56f8b9abd83a
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Motivations

What if observations X = {xi}i are ordered ? e.g.
■ time series
■ genomic data: observations collected at precise locations in the genome
■ etc.
⇝ it is likely that ”past” influences the ”future”.

Need to introduce dependence between observations/latent variables in the model

Example 2: part-of-speech tagging

Source: https://byteiota.com/pos-tagging/ 61/134
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Motivations

What if observations X = {xi}i are ordered ? e.g.

■ time series
■ genomic data: observations collected at precise locations in the genome
■ etc.

⇝ it is likely that ”past” influences the ”future”.

Need to introduce dependence between observations/latent variables in the model

Example 3: protein coding

From Yoon (2009)
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Reminder on discrete Markov chains
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Markov Chains (discrete)

Suppose we observe a sequence y1:n :== {y1, . . . , yn} at discrete time3 steps 1, . . . , n, with
discrete outcomes yi ∈ {1, . . . ,K}

Markov chain (MC)

We say that the sequence y1:n is a Markov Chain if for all i = 1, . . . , n,

p(yi+1 | y1:i) = p(yi+1 | yi)

”The future is independent from the past knowing the present.”

Joint distribution of the sequence

p(y1:n) = p(y1)p(y2 | y1)p(y3 | y2) . . . p(yn | yn−1) = p(y1)

n∏
i=2

p(yi | yi−1).

Proof of the all the statements made about Markov Chains can be found in Sophie Lemaire’s
course.

3”Time” may also refer to locations within a sequence of words/genes/etc.
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Vocabulary around MC

Homogeneous Markov chain

We say that a markov chain is homogeneous (or time invariant) if the transition probability
p(yi+1 | yi) is independent time (of i).

Initial distribution
We denote as ν = (ν1, . . . , νK) the vector νk := p(y1 = k)

Marginal distribution

We denote as νi = (νi1, . . . , νiK) the vector νik := p(yi = k)

Transition matrix
We denote A the K ×K matrix with Akl = p(zi+1 = l | zi = k) and properties:

■ stochastic matrix: each row sum to 1 -
∑K

l=1 Akl = 1

■ eigenvalue 1 associated to the column vector e = (1, . . . , 1)⊤: Ae = 1 · e
■ For any m,n ∈ N, p(yn+m = l | ym = k) = A

(m)
kl (m-th matrix power)

■ Moreover νi = ν1A
(i−1)

Notation: y1:n ∼MC(ν,A)
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Diagram representation: a toy example

A =

( E1 E2

E1 1− α α
E2 β 1− β

)

E1 E2

α

β

1− α 1− β

Graphical representation of a 2-state homogeneous Markov chain
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A second example: modeling nucleotide transition

A =


A T G C

A
T p(yt=G|yt−1=T )

G
C

 →

Source: https://www.r-bloggers.com/2012/04/introduction-to-markov-chains-and-modeling-dna-sequences-in-r/
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A third example: Ehrenfest’s urn model

■ 4 balls distributed across 2 urns

■ Each turn, we pick a ball and change its urn

■ Let A be the transition of one urn (symmetric
problem) :
→ State = number of balls in this urn

A =



0 1 2 3 4

0 0 1 0 0 0
1 1

4 0 3
4 0 0

2 0 1
2 0 1

2 0
3 0 0 3

4 0 1
4

4 0 0 0 1 0


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Stationary distribution & how to find them

Stationary distribution

Let A be a transition matrix over J1,KK, we say that a vector π such that

π⊤A = π⊤
K∑

k=1

πk = 1, πk ≥ 0

is a stationary (or invariant) distribution for the homogeneous chain MC(ν,A).

Properties

1 π is a discrete probability vector & eigenvector of A⊤ associated to the eigenvalue λ = 1

2 if y1 ∼ π, then ∀n ∈ N, yn ∼ π (hence the name stationary)

3 Existence: for discrete MC it is an application of Perron-Frobenius theorem to A

4 Uniqueness & convergence: if there exists some power q ∈ N⋆ such that A(q) > 0 then

■ π is unique and πk > 0.
■ p(yn = l | y1 = k) = A

(n)
kl −−−−−→

n→+∞
πl, whatever the initial distribution ν is.

Such chains ”forget their past” after enough steps.
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Computing the stationary distribution

First strategy: eigenvector

We know that A⊤π = 1 · π, so that π is an eigenvector associated to the unita eigenvalue.
Careful, most scientific softwares give eigenvector such that ∥v∥2 = 1, so we need to post
process π := v/(

∑
k vk).

When K is big, there are efficient algorithms to find only largest eigenvector under conditions
on A (e.g. Lanczos algorithm for symmetric matrices)

aRecall that eigenvalues (but not eigenvectors) of A and A⊤ are the same.

Second strategy: linear system

We have K unknown π1, . . . , πK and K + 1 equations π⊤(A− I) = 01×K &
∑

k πk = 1
⇝ over-determined linear system.
Thus, we can create a new matrix M by arbitrarily replace a column (say last one) in (A− I)
by 1K×1 and solve for π⊤M = (0, . . . , 0, 1).
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2-state example

Compute the stationary distribution of

A =

(
1− α α
β 1− β

)

A−I =

(
−α α

β − β

)
Replacing last column by (1, 1)⊤ and solving the linear system when

(
π1 π2

)(−α 1
β 1

)
=

(
0 1

)
leads to π = ( β

α+β ,
α

α+β ) provided α+ β ̸= 0.

Question (at home): when do we have convergence of An ? (Consider the matrix A on limit
cases α = β = r, r ∈ {0, 1})
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(
π1 π2

)(−α 1
β 1

)
=

(
0 1

)
leads to π = ( β

α+β ,
α

α+β ) provided α+ β ̸= 0.

Question (at home): when do we have convergence of An ? (Consider the matrix A on limit
cases α = β = r, r ∈ {0, 1})

70/134



Numerical example

Find the stationary distribution of A =

(
0 1 0

1/2 0 1/2
1 0 0

)

A <- matrix(c(0, 1/2,1,1,0,0,0,1/2,0),3,3)

Eigenvector

eigen.res <- eigen(t(A))

Pi <- eigen.res$vectors[,1]

Pi/sum(Pi)

[,1] [,2] [,3]

[1,] 0.4+0i 0.4+0i 0.2+0i

Linear system

M<-diag(1, 3, 3) - A

M[,3] <- rep(1,3)

Pi <- solve(t(M),b=c(0,0,1))

Pi

[1] 0.4 0.4 0.2

Sanity check > (pi - t(pi)%*%A) < 1e-15
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Hidden Markov Models (HMMs)
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HMM: the model

Generative model
A general (discrete) hidden Markov model is defined as

1 z1:n ∼MC(ν,A)

2 (xi)i independent | (zi)i and for all i ∈ J1, nK, xi | {zik = 1} ∼ pγk
(·)

The model parameters are θ = (ν,A, γ) and p(xi | zi = k) = pγk
(xi) are called emission

probability

Marginal likelihood of xi

Denote νi = (νi1, . . . , νiK), such that νik = pθ(zik = 1) a. Then,

pθ(xi) =
∑
k

νikpγk
(xi)

Moreover, if ν1 = π (the chain’s stationary distribution) then pθ(xi) =
∑

k πkpγk
(xi)

⇝ HMMs can be thought of as a generalization of mixture introducing dependency!

aFor homogeneous MC we know that νi = ν⊤A(i−1).
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Graphical model representation

Z1 Z2 Z3

. . .

Zn−1 Zn

X1 X2 X3 Xn−1 Xn

■ Empty circle represents unobserved random variable

■ Gray circles represents observed random variables
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Conditional independence

Z1 Z2 Z3

. . .

Zn−1 Zn

X1 X2 X3 Xn−1 Xn

Looking at the DAG, we have the three fundamental properties of HMM

1 Zi+1 ⊥⊥ Z1:(i−1) | Zi (i.e. Z1:n is a MC)

2 Zi+1 ⊥⊥ X1:i | Zi

3 Xi+1 ⊥⊥ X1:i | Zi+1 (and also | Zi)

This basically states that knowing the hidden state at step i captures all relevant information
about the past.
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Complete-data likelihood

Complete-data log-likelihood for HMMs

log pθ(X,Z) = log pθ(X | Z)× pθ(Z),

= log

 K∏
k=1

n∏
i=1

pγk
(xi)

zik ×
K∏

k=1

νz1kk

K∏
k,l=1

n∏
i=2

A
z(i−1)kzil
k,l

 ,

=

K∑
k=1

n∑
i=1

zik log pγk
(xi) +

K∑
k=1

z1k log νk +

K∑
k,l=1

n∑
i=2

z(i−1)kzil logAk,l.

76/134



Observed-data likelihood

Observed-data log-likelihood for HMMs

pθ(X) = log
∑
Z

pθ(X | Z)× pθ(Z),

= log

 ∑
z1,...,zn

n∏
i=1

K∏
k=1

pγk
(xi)

zik ×
K∏

k=1

νz1kk

K∏
k,l=1

n∏
i=2

A
z(i−1)kzil
k,l

 .

Brute force computation involves O(Kn) operations !
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Posterior distribution

Denote
τik := pθ(zik = 1 | X)

Important: posterior dependencies

Contrary to mixture models

1 τik ̸= p(zik = 1 | xi) ⇝ we need the whole set of observations

2 More generally, pθ(Z |X) does not factorizes over i anymore

pθ(Z |X) ̸=
∏
i

∏
k

τzikik

3 (zi)i are not independent | (xi)i but rather (z1:n) | (x1:n) is an inhomogeneous Markov C

pθ(zi+1 | z1:i, x1:n) =pθ(zi+1 | z1:i, x(i+1):n), (zi+1 ⊥⊥ x1:i | zi)
∝pθ(x(i+1):n |��z1:i, zi+1)pθ(zi+1 | z

�1:i
), (Bayes + HMM)

∝pθ(x(i+1):n, zi+1 | zi),
=pθ(zi+1 | zi, x(i+1):n),

=pθ(zi+1 | zi, x1:n). (zi+1 ⊥⊥ x1:i | zi)
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The ”three” HMM problems

Following Rabiner (1989), there are three problems related to HMMs:

1 Given θ the model parameters, compute the probability of observing x1:n (i.e. the
observed likelihood)

pθ(x1:n)

2 Decoding given θ the model parameters and observations x1:n, find the most probable
sequence of hidden states

ẑ1:n = argmax
z1:n

pθ(z1:n | x1:n)

3 Inference: estimate the model parameters, e.g. by MLE

π̂, Â, γ̂ ∈ argmax
θ

pθ(x1:n)

Actually, many others linked problems...

■ Prediction: pθ(zn+m | x1:n) for m ≥ 1

■ Filtering: pθ(zi | x1:i)

■ Smoothing: pθ(zi | x1:n) ̸= filtering, notice the conditioning on all the evidence
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Inference in HMMs
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Reminder on MLE & EM

θ̂ ∈ argmax
θ

pθ(X)

EM algorithm

Start with θ(0) and repeat until convergence

■ E-step: given the current estimate θ(t), compute the posterior pθ(t)(Z |X), or at least
all its necessary moments to compute

Eθ(t)

[
log pθ(X,Z) |X

]
= EZ∼p

θ(t)
(·|X)

[
log pθ(X,Z)

]
.

■ M-step: update the estimate of θ with

θ(t+1) ∈ argmax
θ

Eθ(t)

[
log pθ(X,Z) |X

].
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E-step: compute EZ∼p
θ(t)

(·|X)

[
log pθ(X,Z)

]
In Slide 76 we derived the expression of log pθ(X,Z), hence using linearity of E we get:

E
[
log pθ(X,Z) |X

]
=E

 K∑
k=1

z1k log νk +

K∑
k,l=1

n∑
i=2

z(i−1)kzil logAk,l |X


+ E

 K∑
k=1

n∑
i=1

zik log pγk
(xi) |X

 ,

=

K∑
k=1

τ1k log νk +

K∑
k,l=1

n∑
i=2

ξi,k,l logAk,l +

K∑
k=1

n∑
i=1

τik logΨi(k).

Where:

Ψi(k) := pγk
(xi), (Emission probability)

τik := pθ(t)(zik = 1 |X) = E
[
zik |X

]
,

ξi,k,l := pθ(t)(z(i−1)k = 1, zil = 1 |X) = E
[
z(i−1)kzil |X

]
Hence, we need to compute ”smoothed” posterior of all unigrams zi and bi-grams (zi−1, zi)
⇝ no straight-forward closed form as in mixture since p(zi |X) ̸= p(zi | xi) anymore
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Intuition: ”breaking” the chain

The smoothed posteriors can be computed thanks to a recursion called forward-backward.

The key decomposition lies with the fact that the chain can be split4 into two distinct parts -
past and future - conditionally on zi

p(zi = k, x1:n) =p
(
zi = k, x1:i, x(i+1):n

)
,

=p
(
x(i+1):n | zi = k,��x1:i

)
p (x1:i, zi = k) .

4As opposed to Fleetwood Mac’s famous song
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The forward-backward algorithm
Proposition

For a given parameter θ, the posterior probabilities τik and ξi,k,l can be computed by the two
following recursions (we drop the θ dependencies for readability, p = pθ)

Forward-step filtering step αi = (αi(1), . . . , αi(K)) with

αi(k) = p(zi = k, x1:i) −→

{
α1 = ν1 ⊙Ψ1,

αi = Ψi ⊙ (A⊤αi−1).
(Forward recursion)

Backward compute likelihood of future evidence given that zi = k

βi(k) = p(x(i+1):n | zi = k) −→

{
βn = 1,

βi−1 = A(Ψi ⊙ βi).
(Backward recursion)

Then the smoothed posteriors are obtained with

τik = p(zi = k |X) ∝ αi(k)βi(k),

ξi,k,l = p(zi = k, zi+1 = l |X) ∝ αi(k)Ψi+1(l)βi+1(l)Akl
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Proof of the forward recursion

αi(k) = p(x1:i, zi = k) =

K∑
l=1

p(x1:i, zi−1 = l, zi = k),

=

K∑
l=1

p(x1:i−1, xi, zi−1 = l, zi = k),

=

K∑
l=1

p(xi, zi = k | x1:i−1, zi−1 = l)p(x1:i−1, zi−1 = l),

=

K∑
l=1

p(xi | zi = k,(((((((
x1:i−1, zi−1 = l)p(zi = k |���x1:i−1, zi−1 = l)p(x1:i−1, zi−1 = l),

= p(xi | zi = k)

K∑
l=1

p(zi = k | zi−1 = l)p(x1:i−1, zi−1 = l), (HMM model)

= Ψi(k)

K∑
l=1

Alkαi−1(l).

=⇒ αi = Ψi ⊙ (A⊤αi−1).
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Proof of the backward recursion

βi−1(k) = p(xi:n | zi−1 = k) =

K∑
l=1

p(xi:n, zi = l | zi−1 = k),

=

K∑
l=1

p(xi, x(i+1):n, zi = l | zi−1 = k),

=

K∑
l=1

p(x(i+1):n | zi = l,����zi−1 = k,��xi)p(zi = l, xi | zi−1 = k),

=

K∑
l=1

p(x(i+1):n | zi = l)p(xi | zi = l,����zi−1 = k)p(zi = l | zi−1 = k),

=

K∑
l=1

βi(l)Ψi(k)Akl,

=⇒ βi−1 = A(Ψi ⊙ βi).
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Proof for the one-slice smoothed marginal τik

We previously saw Slide 82 that

τik = p(zi = k |X),

=
p (zi = k, x1:n)

p(x1:n)
,

=

βi(k)︷ ︸︸ ︷
p
(
x(i+1):n | zi = k

) αi(k)︷ ︸︸ ︷
p (x1:i, zi = k)

p(x1:n)
, (Slide 82)

∝ αi(k)βi(k).

In addition, we get that the normalization factor (i.e. the observed likelihood) is

p(x1:n) =
∑
l

αi(l)βi(l), at any time step i = 1, . . . , n
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Proof for the two-slice smoothed marginal ξi,k,l

Using the HMM conditional independencies we can simplify

ξi,k,l = p(zi = k, zi+1 = l | x1:n) =
p(x1:n, zi = k, zi+1 = l)

p(x1:n)
,

∝ p(x1:n, zi = k, zi+1 = l),

∝ p(x1:i | zi = k,((((((((
zi+1 = l, x(i+1):n)p(zi = k, zi+1 = l, x(i+1):n),

∝ p(x1:i | zi = k)p(zi = k, zi+1 = lxi+1, x(i+2):n),

∝ p(x1:i | zi = k)p(x(i+2):n | zi+1 = l,((((((xi+1, zi = k)p(zi = k, zi+1 = l, xi+1),

∝ p(x1:i | zi = k)p(x(i+2):n | zi+1 = l)p(xi+1 | zi+1 = l,���zi = k)p(zi+1 = l | zi = k)p(zi = k),

∝ p(x1:i | zi = k)βi+1(l)Ψi+1(l)Aklp(zi = k),

∝ p(x1:i, zi = k)βi+1(l)Ψi+1(l)Akl,

∝ αi(k)βi+1(l)Ψi+1(l)Akl.
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Additional properties of the forward-backward messages

Computational complexity

The FB procedure is in O(nK2)

In addition to τik and ξi,k,l

■ The observed likelihood can be computed in two equivalent ways:

1 with a single forward pass as pθ(x1:n) =
∑

l αn(k)
2 at any step i: pθ(x1:n) =

∑
k αi(k)βi(k)

Using 1 is called a forward algorithm.

■ The filtered marginal at step i is

p(zi = j | x1:i) = αi(k)/
∑
l

αi(l)
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Some remarks on forward-backward

Not complicated to implement but

1 Careful with indices, notations easily get mixed up

2 Numerical error: code in log-space logα, log τ and log ξ with the ”log-sum-exp trick” for
computing the normalizing constant. An example

logαi = logΨi + logA⊤αi−1 − ctei

with ctei := log
∑

k e
logαi(k). When computing ctei, we use

log
∑
k

eyk = m⋆ + log
∑
k

eyk−m⋆

︸ ︷︷ ︸
≥1

,

with yk = logαi(k) to ensure there is at least one e0 = 1 in the sum for numerical
stability.
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M-step

Assume τ
(t)
ik and ξ

(t)
i,k,l have been computed by FB recursion (E-step). We need to solve

θ(t) ∈ argmax
θ=(ν,A,γ)

{
ft(θ) := EZ∼p

θ(t−1)

[
log pθ(X,Z)

]}
.

With

ft(θ) =

K∑
k=1

τ
(t)
1k log νk +

K∑
k,l=1

n∑
i=2

ξ
(t)
i,k,l logAk,l︸ ︷︷ ︸

Markov part

+

K∑
k=1

n∑
i=1

τ
(t)
ik log pγk

(xi)︸ ︷︷ ︸
Emission part

,

and constraints

K∑
k=1

νk = 1 and
K∑
l=1

Akl = 1, ∀l = 1, . . . ,K and γk ∈ Γ
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M-step for the Markov Chain part

Introducing Lagrange multipliers λ0, . . . , λK associated to the K + 1 equality constraints we
seek stationary points of

L(ν,A;λ) =
K∑

k=1

τ
(t)
1k log νk +

K∑
k,l=1

n∑
i=2

ξ
(t)
i,k,l logAk,l

+ λ0(1−
∑
k

νk) +
∑
k

λk(1−
∑
l

Akl).

This leads for ∀k, l ∈ J1,KK:

ν̂
(t)
k =

τ
(t)
1k

λ0
, Âkl =

∑n−1
i=1 ξ

(t)
i,k,l

λk
.

Injecting into the K + 1 constraints we get the Lagrange multipliers

■ λ0 =
∑

k τ
(t)
1k = 1

■ ∀k = 1, . . . ,K, λk =
∑n−1

i=1

∑K
l=1 ξi,k,l =

∑n
i=2 τ

(t)
ik .
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M-step for the emission model part

Obviously dependent on the emission model pγk

Still, there are 2 interesting cases we can think about

1 Discrete emissions xi ∈ {1, . . . , V } and xi | {zik = 1} ∼ MV (1, γk) with each γk a
probability vector over V outcomes. Minimizing the Lagrangian accounting for∑

v γv = 1, we then have

γ̂kv =

n∑
i=1

τikxiv/ñk, with: ñk =

n∑
i=1

τik.

2 Exponential family if log pηk
(xi) = η⊤k Tk(xi)− ak(ηk)− bk(xi), then we seek to solve this

implicit equation in ηk

∇a(ηk) =
∑n

i=1 τikTk(xi)

ñk

1 is a particular case sinceMV (1, γ) can be cast in the exponential family. Its minimal
form involves η = log γ/γV , a(η) = log

∑
v e

ηv and T (x) = x. Notice that
∇a(η) = softmax(η) = γ.
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Final comment: prediction of Zi+1 | Zi, X1:(i+1)

Recall the DAG

Z1 Z2 Z3

. . .

Zn−1 Zn

X1 X2 X3 Xn−1 Xn

Hence, in a HMM we have that for all k:

p(zi+1 = l | zi = k, X1:(i+1)) = p(zi+1 = l | zi = k, X�1:(i+1)), (HMM)

∝ p(X(i+1) |���zi = k, zi+1 = l)p(zi+1 = l | zi = k) (Bayes)

∝ pγl
(xi+1)Akl,

=
pγl

(xi+1)Akl∑
l pγl

(xi+1)Akl
.

⇝ (Z1:n | X1:n) is an inhomogeneous MC with the transition probability at step i that are
biased according to the likelihood of the data under the arrival state exp(Ψi(l))
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Decoding in HMMs: Viterbi algorithm
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Reminder: the decoding problem

Context: parameters θ are given and fixed

Decoding is joint MAP estimation of z1:n

ẑ1:n = argmax
z1:n

pθ(z1:n | X). (Decoding problem)

For HMM, decoding is solved via the Viterbi algorithm.

Warning this is different5 from classification (marginal MAP)

z̃i = argmax
k=1,...,K

{
τik = pθ(zik = 1 | X)

}
.

N.B. classification can be solved via a forward-backward algorithm

5Except in mixture model where the two are equivalent since the joint posterior factorizes over i
96/134



Intuition for joint MAP

Fix a step i, we can define the quantity

Vi(k) := max
z1,...,zi−1

pθ(z1:(i−1), zi = k, x1:i)

Connection to decoding ?

pθ(Z | X) =
pθ(Z,X)

pθ(X)
=⇒ argmax

Z
pθ(Z | X) = argmax

k=1,...,K
Vnk.

What do we gain working with Vi ? ⇝ recursion

Vi(k) = Ψi(k) max
l=1,...,K

AlkVi−1(l)

We will prove it later
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Viterbi algorithm

Proposition

The most probable hidden state sequence can be computed by the following recursions
Forward V1(k) = ν1kpγk

(x1) and for i ≥ 2

Vi(k) = Ψi(k) · max
l=1,...,K

Vi−1(l)Alk, (Store value)

Si(k) = argmax
l=1,...,K

Vi−1(l)AlkΨi(k) (Store best preceding state for going to k at step i)

Backtracking ẑn = argmaxk Vnk and for all 2 ≤ i ≤ n:

ẑi−1 = Si(ẑi). (Backtracking)
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Proof of the forward recursion

Vi(k) = max
z1:(i−1)

pθ(z1:(i−1), zi = k, x1:i),

= max
z1:(i−1)

pθ(z1:(i−1), zi = k, x1:(i−1), xi),

= max
z1:(i−1)

pθ(xi | zi = k,����z1:(i−1),����x1:(i−1))pθ(zi = k, z1:(i−1), x1:(i−1)),

= max
zi−1

max
z1:(i−2)

pθ(xi | zi = k) pθ(zi = k | z�1:(i−1),����x1:(i−1)) pθ(z1:(i−2), zi−1, x1:(i−1)),

= max
l=1,...,K

max
z1:(i−2)

Ψi(k) pθ(zi = k | zi−1 = l) pθ(z1:(i−2), zi−1 = l, x1:(i−1)),

= max
l=1,...,K

Ψi(k) Alk max
z1:(i−2)

pθ(z1:(i−2), zi−1 = l, x1:(i−1))︸ ︷︷ ︸
Vi−1(l)

,

= Ψi(k) max
l=1,...,K

AlkVi−1(l).

Where we used the fact that all quantities in the products are ≥ 0 and that for a ≥ 0,
maxl a× f(l) = a×maxl f(l)
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Proof of the backtracking step (i)

Computing Vi amounts to assign a score to the succession of optimal choices up to i− 1 that
leads to zi = k (conditionally on x1:i).

The backward recursion traces back the succession of optimal choices to retrieve the whole
optimal path.
The justification is based on the fact that, in HMMs:

pθ(x1:n, z1:n) = pθ(x1, z1)

n∏
i=2

p(xi, zi | zi−1) = f1(z1)f2(z1, z2)f3(z2, z3) . . . fn(zn−1, zn).

So that we can distribute maxz1,...,zn over the product of these positive functions
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Proof of the backtracking step (ii)

max
z1:n

p(x1:n, z1:n) = max
zn

max
z1:(n−1)

p(x1:n, z1:(n−1), zn),

= max
zn

Vn(zn) =: Vn(ẑn), (def of ẑn)

= max
z1:(n−1)

p(z1:(n−1), ẑn, x1:(n−1), xn),

= max
z1:(n−1)

p(ẑn, xn | zn−1) p(z1:(n−1), x1:(n−1)), (chain rule + HMM)

= max
zn−1

Ψn(ẑn)Azn−1ẑn max
z1:(n−2)

p(z1:(n−2), zn−1, x1:(n−1))︸ ︷︷ ︸
Vn−1(zn−1)

,

= Ψn(ẑn)Aẑn−1ẑn︸ ︷︷ ︸
p(xn,ẑn|ẑn−1)

Vn−1(ẑn−1), (def of ẑn−1 = Sn(ẑn))

= . . .

=

 n∏
i=3

p(xi, ẑi | ẑi−1)

×max
z1

p(x1, z1)Az1ẑ2Ψ2(ẑ2)
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Proof of the backtracking step (iii)

max
z1:n

p(x1:n, z1:n) = . . .

=

 n∏
i=3

p(xi, ẑi | ẑi−1)

×max
z1

p(x1, z1)Az1ẑ2Ψ2(ẑ2)

=

 n∏
i=3

p(xi, ẑi | ẑi−1)

× p(x1, ẑ1)Aẑ1ẑ2Ψ2(ẑ2), (def of ẑ1 = S2(ẑ2))

= p(x1, ẑ1)

n∏
i=2

p(xi, ẑi | ẑi−1),

= p(ẑ1:n, x1:n).

So the backtracking step captures the posterior mode.
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Some notes on Viterbi

At each step we must

■ Storage complexity of Viterbi is in O(nK)

■ Computational complexity is in O(nK2) as each Vi(k) involves a maximum over K values.

Analogy between max (Viterbi) and
∑

(FB).

The Viterbi algorithm is a particular case of the ”max-product algorithm” for computing modes
in DAG (see these course notes for details). It is exact when the DAG is a tree, which is the
case in HMMs.
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Stochastic Block Model: an
introduction to variational inference
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Qu’est qu’un réseau : quelques exemples concrets

Réseaux sociaux
Individus connectés par des relations de travail, d’amitiés , etc.

Source : Wikipédia, Zigomitros Athanasios
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Qu’est qu’un réseau : quelques exemples concrets

Réseaux de transports

Villes connectées par des routes, gares connectée par des trains, etc.

Source : RATP
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Qu’est qu’un réseau : quelques exemples concrets

Réseaux de gènes

Gènes ou protéines intéragissant chimiquement entre elles pour réguler l’expression d’autres
gènes.

Source : Wikipédia, réseaux de régulation chez le riz
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Formalisation mathématique

Un graphe6 est une structure générale qui encode des liens entre des objets

Vocabulaire
Dans le language de la théorie des graphes

■ Objets ↔ nœuds/sommet/vertex

■ Liens ↔ arrête/arcs/edge

■ Le sens de la liaison peut être important (dirigé) ou non (non-dirigé)

■ La liaison peut être binaire (présence/absence) ou pondérée

Définition: graphe

Un graphe G = (V,E) est la donnée

■ d’un ensemble V de n = |V | noeuds
■ d’un ensemble E de m = |E| arrêtes

Définition très générale et flexible ⇝ un même cadre général pour des problèmes très différents

6Ou réseau, l’un est plus commun à la communauté mathématiques, l’autre aux domaines ”appliqués”.
106/134



Adjacency matrix

There are several way to represent a graph.

Definition: adjacency matrix

The adjacency matrix of G = (V,E) is the n × n matrix X defined as Xij = 1 if edge
e = (i→ j) ∈ E and 0 elsewhere.
Properties:

■ X is symmetric if the graph is undirected

■ |E| = m =
∑

ij Xij (divided by 2 if G undirected).

A

B

C

D

Adjacency matrix

A B C D
A 0 1 1 0
B 1 0 1 1
C 1 1 0 0
D 0 1 0 0
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Dot plot representation

Adjacency matrix

A B C D
A 0 1 1 0
B 1 0 1 1
C 1 1 0 0
D 0 1 0 0

Node

N
ode

A B C D

D

C

B

A
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Random graph models
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Random graphs: what for

▶ Define a probabilistic model of the interactions (i, j) in the graph. Many possibilities

■ statistical model on the adjacency matrix (this course)

■ combinatorics, statistical physics

▶ We want to do inferential statistics, answering questions such as

■ comparison with a ”null model” where edge are uniformly random

■ Explain how local structures may govern the global one

■ Understand the process that generated an observed network

Applications : graph generation, community detection, link prediction, tests, model selection
. . .
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A first random graph model: Erdös-Renyi (ER)

Model for n nodes,

Xij ∼
i.i.d.
B(p) ⇐⇒ P(Xij = 1) = p (ER model)

where B is Bernoulli and p ∈ [0, 1] is the probability of connection.

Properties of ER

■ Model on the adjacency matrix X

■ Degree distribution di :=
∑n

j ̸=i Xij ∼ Binom(n− 1, p)

■ MLE: p̂ = argmaxp log
∏

i ̸=j B(Xij | p) = m
n(n−1) (density of the graph)
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Realization of an ER with n = 50 nodes and p = 0.1

Node

N
ode

0.00

0.05

0.10

0.15

0.20

0.25

0 3 6 9 12
degree

de
ns

ity
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Stochastic block model (SBM)

Hypothesis: nodes belong to groups (clusters) and the probability of connection between node
i and j only depends on the pair of cluster zi and zj .

Latent variable model of the adjacency matrix

1 ∀i, zi
i.i.d∼ MK(1, π)

2 ∀i ̸= j, Xij | {zikzjl = 1} ∼ B(γkl) (no self-loop)

Remarks

■ generative model: easy to sample from SBM

■ many interesting real-world structure can emerge from it:

1 Communities: γkk ≫ γkl
2 Nestedness: hierarchical structure in γ.
3

■ easily generalize to weighted-graph by replacing Bernoulli with pγkl

■ marginal of one edge: Xij ∼
∑K

k,l=1 πkπlpγkl
⇝ ”mixture of Erdös-Renyi”.
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Illustration of SBM

1 2

3

4

5

6

7

84

5

6

7

8

π••

9

10

π••

π••

π••

π••
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Some example of SBM realizations
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DAG representation of SBM

(Zi)i are ⊥⊥ and Yij only depends on (Zi, Zj) which give the DAG (for n = 4 nodes)

Source: S. Robin polycopié, notation change: replace Y by X

Remark: n latent variables (node-related) for n2 observations (edges)
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Likelihoods
Complete-data likelihood

pθ(X,Z) = pθ(X | Z)× pθ(Z),

=

n∏
i ̸=j

pγ(xij | zi, zj)×
n∏

i=1

pπ(zi),

=

n∏
i ̸=j

K∏
k,l=1

pγkl
(xij)

zikzjl ×
n∏

i=1

K∏
k=1

πzik
k ,

Observed-data likelihood (marginal of the whole adjacency matrix)

pθ(X) =
∑
Z

pθ(X,Z),

=
∑

z1,...,zn

 n∏
i̸=j

K∏
k,l=1

pγkl
(xij)

zikzjl ×
n∏

i=1

K∏
k=1

πzik
k

 .
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Posterior dependencies: DAG moralization

Source: S. Robin polycopié, notation change: replace Y by X

Thus A,B | C are not independent since

p(A,B | C) =
p(A)p(B)p(C | A,B)

p(C)
̸= p(A | C)p(B | C).

does not factorize over A, B
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SBM case: intricate posterior dependencies

Source: S. Robin polycopié, notation change: replace Y by X

Problem: computing p(Z |X) require exploring the Kn configuration ⇝ no hope of
simplifications as in mixture model/HMMs...
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Variational inference & illustration for the SBM
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Untractable E-step

Until now we always managed to compute the necessary moments of the posterior for E-step,
i.e. to compute (given θ(t))

f(θ) = EZ∼p
θ(t)

(·|X)

[
log pθ(X,Z)

]
(1)

Reminders: computing Equation (1) involve

■ For mixtures: the marginal τ
(t+1)
ik = pθ(t)(zi = k |X) = pθ(t)(zi = k | xi) (posterior

independence).

■ For HMMs: we additionally need ξi,k,l = pθ(t)(zi = k, zi+1 = l |X) + no posterior
independence ⇝ FB procedure in O(nK2).

Problem: what if there’s no hope of reasonable computation time for Equation (1) ? Either
because

1 complicated posterior dependencies: Z |X (as in SBM)

2 intractable emission model: even if posterior factorizes, it can be intractable. For example,
in mixture pθ(xi | zi = k) ∝ πkpγk

(xi), intractable for a choice of non-analytical pγk
.
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Back to EM: coordinate-ascent on the ELBO

Recall the coordinate-ascent formulation from slide 49

q(t+1)= argmax
q

L(q, θ(t)), (E-step)

θ(t+1) = argmax
θ

L(q(t+1), θ), (M-step)

where L(q, θ) is the ELBO:

L(q, θ) := EZ∼q[log pθ(X,Z)] +H(q) (ELBO)

The E-step in an unconstrained problem over distribution q ∈ P(Z) (proba over
(z1, . . . , zn)). It can be rewritten as

q(t+1) = argmin
q∈P(Z)

KL(q(·) ∥ pθ(t)(· |X)), (E-step equivalent formulation)

which naturally leads to setting q(t+1) = pθ(t)(· |X)
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Variational inference: constraining the E-step

Since complex models have intractable posteriors, we need to constrain the distribution q to
belong in some prescribed family of probability distributions7 q ∈ Q ⊂ P(Z).

The variational, E-step becomes

q(t+1) = argmax
q∈Q

L(q, θ(t)). (VE-step)

Or, equivalently,
q(t+1) = argmin

q∈Q
KL(q(·) ∥ pθ(t)(· |X)).

Key idea: choose Q such that calculations in (VE-step) are tractable.

7The variational terminology stems from the fact that we are considering optimization problem over space of
functions (probability densities) which is called variational calculus.
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A common choice of variational family: mean-field approximation

Natural follow-up question: what choice for q ?

Mean-field family: ”forget” conditional dependencies of Z |X

q ∈ Q =

qτ : qτ (Z) =

n∏
i=1

qτi(zi), τi ∈ Ψ

 so that max
q∈Q
L(q) = max

τ∈Ψn
L(qτ ). (2)

Important remark: q is not a model of the observed data but rather the ELBO (and the KL
minimization) connects q to the data & the model (Blei et al. 2017)

Property

■ Entropy term: by independence H(q) =
∑n

i=1H(qi)
■ when zi is discrete (this course): we can enforce a parametric form qτi(zi) =MK(1; τi)

and Ψ = ∆K
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Variational-EM (VEM) algorithm

VEM algo: coordinate-ascent on the ELBO

Start from initial θ(0) and set a variational family Q

q(t+1) = argmax
q∈Q

L(q, θ(t)), (VE-step)

θ(t+1) = argmax
θ

L(q(t+1), θ), (M-step)

In general, maximization over τ = (τ1, . . . , τn) is done via a coordinate ascent / fixed-point
algorithm where we iteratively update qi keeping q−i fixed, iterating through i = 1, . . . , n:

q⋆i = argmax
qi

L(qi, q−i). (CAVI)

Pros & cons of VEM algorithm
■ Pros:

1 we choose Q such that everything is tractable
2 Approximation of intractable posterior via q(T ) in the sense of KL-divergence

■ Cons: only increase the ELBO, no guarantee to increase the likelihood anymore ! We get
an estimator

θ̂V ∈ argmax
θ

L(q(T ), θ)
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The VEM algorithm for SBM: VE-step (i)

Let’s write the VE-step for the mean-field approximation

qτ (Z) =

n∏
i=1

Mk(zi | 1, τi) =
n∏

i=1

K∏
k=1

τzikik ,
∑
k

τik = 1,∀i

with entropy H(q) = −
∑

i

∑
k τik log τik.

The ELBO then writes as

L(qτ , θ) =Eq

[
log pθ(X,Z) |X

]
+H(q),

=
∑
i̸=j

K∑
k,l=1

Eq

[
zikzjl

]
log pγkl

(xij) +

n∑
i=1

K∑
k=1

Eq [zik] log πk −
n∑

i=1

τik log τik

=
∑
i ̸=j

K∑
k,l=1

τikτjl log pγkl
(xij) +

n∑
i=1

K∑
k=1

τik log πk −
n∑

i=1

τik log τik

where we used the fact that zi ⊥⊥ zj under q, and Eq[zik] = qi(zik = 1) = τik
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The VEM algorithm for SBM: VE-step (ii)

In VE-step, we wish to maximize L(qτ , θ) with respect to τ under n constraints
∑

k τik = 1.

Introducing (λi)
n
i=1, we seek stationnary points of the Lagrangian

L(qτ , θ) +
n∑

i=1

λi(1−
K∑
l=1

τik).

Which naturally leads to n×K equations

K∑
l=1

n∑
j ̸=i,j=1

τ̂jl log pγkl
(xij) + log πk − log τik − 1− λi = 0. (3)

under the constraints
∑K

k=1 τik = 1,∀i
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The VEM algorithm for SBM: VE-step (iii)

The n×K equations can be rewritten for fixed i, k

τ̂ik = e1+λiπk

n∏
j ̸=i,j=1

K∏
l=1

p
τ̂jl
γkl ∝ πk

n∏
j ̸=i,j=1

K∏
l=1

p
τ̂jl
γklπk (4)

Coordinate-ascent: fixed point algorithm where we iterate through Equation (4) for all
i = 1, . . . , n until a criterion is verified.

Some remarks

1 In fixed point, for each i the coordinate τik is normalized to be a probability vector.

2 VE-step is itself iterative: stop after ve.niter iterations or increase in τ 7→ L(τ, θ(t))
below a given threshold.
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M-step

Bonus as an homework
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Clustering ?

We used to perform MAP estimation of Z

Ẑ ∈ argmax
Z

pθ̂(Z |X).

⇝ intractable here.

But VEM also outputs a KL approximation of qτ̂ ≈ pθ̂(· |X) in the mean-field variational
family, so we can use

Ẑ ∈ argmax qτ̂ (Z) = argmax τ̂
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Conclusion of the course
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What we saw in this course

Three examples of general discrete latent variable models: GMM, HMM, SBM

■ incomplete data models: pθ(X) =
∑

Z pθ(X,Z)

■ the complete likelihood is easier to write than the marginal (but we do not observe Z)

■ Generalizes well to different type of data (discrete, continuous) via the choice of different
X | Z (i.e. pγ)

Inference procedures for latent variable model

■ EM algorithm

■ Main difficulties lies in E-step and links to the tractability of the posterior Z |X
■ tractable for mixture
■ tractable (forward-backward) for HMMs: clever use of the DAG
■ intractable for SBM

■ M-step is model dependent, i.e. depends on the choice of X | Z.

⇝ this inference part is general and applies to continuous latent variable models as well !

Pratical implementation and caveats
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