Unsupervised learning
Description
Chargé de cours : Nicolas Jouvin
Horaires : Mercredi 8h30-11h45.
News
Two internship proposal on physics-informed neural network :
Up-to-date version of the slides: here (there will be frequent updates, keep up to date !)
Outline
- Introduction to Bayesian statistics
- Clustering with finite mixture models
- The EM algorithm
- Hidden Markov Models
- Stochastic Block Model and introduction to variational inference
Séances
- 1ère séance : 3h class + Dowload TD1 exercice sheet + Bonus practical session
- 2eme séance : Expectation-Maximization algorithm. Download the TD2 exercise sheet + live correction.
- 3ème séance : Introduction to HMMs + Bonus practical session on discrete Markov chains
Corrections
Ressources en ligne
- Stéphane Robin’s Lecture
- Sophie Donnet’s Lecture
- Chistopher M. Bishop’s Book : for this course, relevant chapters are mostly 8, 9 & 10 (chapter 12 on continuous latent variables can be useful as well, the core ideas do not change)
- Kevin P. Murphy’s Book