Unsupervised learning
Description
Chargé de cours : Nicolas Jouvin Horaires : Mercredi 8h30-11h45.
# Slides
Up-to-date version of the slides: here (there will be frequent updates, keep up to date !)
# News
- Exam: mercredi 8 janvier - 8h30-11h30 (Salle à vérifier sur Hyperplanning)
- Devoir maison facultatif :
- Annales :
- Sujet 2023
- Sujet 2022 (attention, je n’étais pas chargé du cours cette année là)
Outline
- Introduction to Bayesian statistics
- Clustering with finite mixture models
- The EM algorithm
- Hidden Markov Models
- Stochastic Block Model and introduction to variational inference
Séances
- 1ère séance : 3h class + Dowload TD1 exercice sheet + Bonus practical session
- Séance 2 & 3: Mixture models & Expectation-Maximization algorithm. Download the TD2 exercise sheet + live correction.
- 4ème séance : Introduction to HMMs + Bonus practical session on discrete Markov chains
- 5ème séance: EM algorithm for HMMs (a.k.a. Baum-Welsch) + Practical session on HMMs: EM and Viterbi + live_correction
- 6ème séance: The stochastic block model & introduction to variational inference
Corrections
-
Séance 2 - chaîne de Markov: télécharger le Rmarkdown de correction
-
Séance 4 : algorithme EM télécharger le Rmarkdown de correction
-
Séance 5 : TP HMM télécharger le Rmarkdown de correction
# Ressources en ligne
- Stéphane Robin’s Lecture
- Sophie Donnet’s Lecture
- Chistopher M. Bishop’s Book : for this course, relevant chapters are mostly 8, 9 & 10 (chapter 12 on continuous latent variables can be useful as well, the core ideas do not change)
- Kevin P. Murphy’s Book